1
|
Dong YN, Mercado-Ayón E, Coulman J, Flatley L, Ngaba LV, Adeshina MW, Lynch DR. The Regulation of the Disease-Causing Gene FXN. Cells 2024; 13:1040. [PMID: 38920668 PMCID: PMC11202134 DOI: 10.3390/cells13121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
Collapse
Affiliation(s)
- Yi Na Dong
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jennifer Coulman
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Liam Flatley
- The Wharton School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucie Vanessa Ngaba
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miniat W. Adeshina
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David R. Lynch
- Departments of Pediatrics and Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Bao YN, Yang Q, Shen XL, Yu WK, Zhou L, Zhu QR, Shan QY, Wang ZC, Cao G. Targeting tumor suppressor p53 for organ fibrosis therapy. Cell Death Dis 2024; 15:336. [PMID: 38744865 PMCID: PMC11094089 DOI: 10.1038/s41419-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.
Collapse
Affiliation(s)
- Yi-Ni Bao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Xin-Lei Shen
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Wen-Kai Yu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Li Zhou
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qing-Ru Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Qi-Yuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
3
|
Goswami P, Šislerová L, Dobrovolná M, Havlík J, Šťastný J, Brázda V. Interaction of C-terminal p53 isoforms depends strongly upon DNA sequence and topology. Biochimie 2022; 208:93-99. [PMID: 36549455 DOI: 10.1016/j.biochi.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The p53 protein is a key tumor suppressor and the most commonly mutated and down-regulated protein in human tumors. It functions mainly through interaction with DNA, and p53 acts as a transcription factor that recognizes the so-called p53 target sites on the promoters of various genes. P53 has been shown to exist as many isoforms, including three C-terminal isoforms that are produced by alternative splicing. Because the C-terminal domain is responsible for sequence-nonspecific binding and regulation of p53 binding, we have analyzed DNA recognition by these C-terminal isoforms. Using atomic force microscopy, we show for the first time that all C-terminal isoforms recognize superhelical DNA. It is particularly noteworthy that a sequence-specific p53 consensus binding site is bound by p53α and β isoforms with similar affinities, whilst p53α shows higher binding to a quadruplex sequence than both p53β and p53γ, and p53γ loses preferential binding to both the consensus binding sequence and the quadruplex-forming sequence. These results show the important role of the variable p53 C-terminal amino acid sequences for DNA recognition.
Collapse
Affiliation(s)
- Pratik Goswami
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Jan Havlík
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Cantara A, Luo Y, Dobrovolná M, Bohalova N, Fojta M, Verga D, Guittat L, Cucchiarini A, Savrimoutou S, Häberli C, Guillon J, Keiser J, Brázda V, Mergny JL. G-quadruplexes in helminth parasites. Nucleic Acids Res 2022; 50:2719-2735. [PMID: 35234933 PMCID: PMC8934627 DOI: 10.1093/nar/gkac129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Parasitic helminths infecting humans are highly prevalent infecting ∼2 billion people worldwide, causing inflammatory responses, malnutrition and anemia that are the primary cause of morbidity. In addition, helminth infections of cattle have a significant economic impact on livestock production, milk yield and fertility. The etiological agents of helminth infections are mainly Nematodes (roundworms) and Platyhelminths (flatworms). G-quadruplexes (G4) are unusual nucleic acid structures formed by G-rich sequences that can be recognized by specific G4 ligands. Here we used the G4Hunter Web Tool to identify and compare potential G4 sequences (PQS) in the nuclear and mitochondrial genomes of various helminths to identify G4 ligand targets. PQS are nonrandomly distributed in these genomes and often located in the proximity of genes. Unexpectedly, a Nematode, Ascaris lumbricoides, was found to be highly enriched in stable PQS. This species can tolerate high-stability G4 structures, which are not counter selected at all, in stark contrast to most other species. We experimentally confirmed G4 formation for sequences found in four different parasitic helminths. Small molecules able to selectively recognize G4 were found to bind to Schistosoma mansoni G4 motifs. Two of these ligands demonstrated potent activity both against larval and adult stages of this parasite.
Collapse
Affiliation(s)
- Alessio Cantara
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Yu Luo
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Michaela Dobrovolná
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Natalia Bohalova
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Daniela Verga
- CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France
| | - Lionel Guittat
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Anne Cucchiarini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Solène Savrimoutou
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, UFR des Sciences Pharmaceutiques, Bordeaux, France
| | - Cécile Häberli
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jean Guillon
- ARNA Laboratory, Université de Bordeaux, INSERM U1212, CNRS UMR 5320, UFR des Sciences Pharmaceutiques, Bordeaux, France
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Václav Brázda
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic
| | - Jean Louis Mergny
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau, France
| |
Collapse
|
5
|
Zamoskovtseva AA, Golyshev VM, Kizilova VA, Shevelev GY, Pyshnyi DV, Lomzov AA. Pairing nanoarchitectonics of oligodeoxyribonucleotides with complex diversity: concatemers and self-limited complexes. RSC Adv 2022; 12:6416-6431. [PMID: 35424594 PMCID: PMC8981972 DOI: 10.1039/d2ra00155a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022] Open
Abstract
The development of approaches to the design of two- and three-dimensional self-assembled DNA-based nanostructures with a controlled shape and size is an essential task for applied nanotechnology, therapy, biosensing, and bioimaging. We conducted a comprehensive study on the formation of various complexes from a pair of oligonucleotides with two transposed complementary blocks that can be linked through a nucleotide or non-nucleotide linker. A methodology is proposed to prove the formation of a self-limited complex and to determine its molecularity. It is based on the "opening" of a self-limited complex with an oligonucleotide that effectively binds to a duplex-forming block. The complexes assembled from a pair of oligonucleotides with different block length and different linker sizes and types were investigated by theoretical analysis, several experimental methods (a gel shift assay, atomic force microscopy, and ultraviolet melting analysis), and molecular dynamics simulations. The results showed a variety of complexes formed by only a pair of oligonucleotides. Self-limited associates, concatemer complexes, or mixtures thereof can arise if we change the length of a duplex and loop-forming blocks in oligonucleotides or via introduction of overhangs and chemical modifications. We postulated basic principles of rational design of native self-limited DNA complexes of desired structure, shape, and molecularity. Our foundation makes self-limited complexes useful tools for nanotechnology, biological studies, and therapeutics.
Collapse
Affiliation(s)
- Anastasia A Zamoskovtseva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
- Moscow Institute of Physics and Technology 9 Institutskiy per., Dolgoprudny 141701 Russia
| | - Victor M Golyshev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Valeria A Kizilova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Georgiy Yu Shevelev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS 8 Lavrentiev Avenue Novosibirsk 630090 Russia
| |
Collapse
|
6
|
Bartas M, Červeň J, Guziurová S, Slychko K, Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int J Mol Sci 2021; 22:ijms22020922. [PMID: 33477647 PMCID: PMC7831508 DOI: 10.3390/ijms22020922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
Collapse
|
7
|
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. Int J Mol Sci 2019; 20:ijms20225605. [PMID: 31717504 PMCID: PMC6888028 DOI: 10.3390/ijms20225605] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor functions of p53 and its roles in regulating the cell cycle, apoptosis, senescence, and metabolism are accomplished mainly by its interactions with DNA. p53 works as a transcription factor for a significant number of genes. Most p53 target genes contain so-called p53 response elements in their promoters, consisting of 20 bp long canonical consensus sequences. Compared to other transcription factors, which usually bind to one concrete and clearly defined DNA target, the p53 consensus sequence is not strict, but contains two repeats of a 5′RRRCWWGYYY3′ sequence; therefore it varies remarkably among target genes. Moreover, p53 binds also to DNA fragments that at least partially and often completely lack this consensus sequence. p53 also binds with high affinity to a variety of non-B DNA structures including Holliday junctions, cruciform structures, quadruplex DNA, triplex DNA, DNA loops, bulged DNA, and hemicatenane DNA. In this review, we summarize information of the interactions of p53 with various DNA targets and discuss the functional consequences of the rich world of p53 DNA binding targets for its complex regulatory functions.
Collapse
|