1
|
Stamou C, Dechambenoit P, Lada ZG, Gkolfi P, Riga V, Raptopoulou CP, Psycharis V, Konidaris KF, Chasapis CT, Perlepes SP. Reactions of Cadmium(II) Halides and Di-2-Pyridyl Ketone Oxime: One-Dimensional Coordination Polymers. Molecules 2024; 29:509. [PMID: 38276587 PMCID: PMC10820575 DOI: 10.3390/molecules29020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The coordination chemistry of 2-pyridyl ketoximes continues to attract the interest of many inorganic chemistry groups around the world for a variety of reasons. Cadmium(II) complexes of such ligands have provided models of solvent extraction of this toxic metal ion from aqueous environments using 2-pyridyl ketoxime extractants. Di-2-pyridyl ketone oxime (dpkoxH) is a unique member of this family of ligands because its substituent on the oxime carbon bears another potential donor site, i.e., a second 2-pyridyl group. The goal of this study was to investigate the reactions of cadmium(II) halides and dpkoxH in order to assess the structural role (if any) of the halogeno ligand and compare the products with their zinc(II) analogs. The synthetic studies provided access to complexes {[CdCl2(dpkoxH)∙2H2O]}n (1∙2H2O), {[CdBr2(dpkoxH)]}n (2) and {[CdI2(dpkoxH)]}n (3) in 50-60% yields. The structures of the complexes were determined by single-crystal X-ray crystallography. The compounds consist of structurally similar 1D zigzag chains, but only 2 and 3 are strictly isomorphous. Neighboring CdII atoms are alternately doubly bridged by halogeno and dpkoxH ligands, the latter adopting the η1:η1:η1:μ (or 2.0111 using Harris notation) coordination mode. A terminal halogeno group completes distorted octahedral coordination at each metal ion, and the coordination sphere of the CdII atoms is {CdII(η1 - X)(μ - X)2(Npyridyl)2(Noxime)} (X = Cl, Br, I). The trans-donor-atom pairs in 1∙2H2O are Clterminal/Noxime and two Clbridging/Npyridyl; on the contrary, these donor-atom pairs are Xterminal/Npyridyl, Xbridging/Noxime, and Xbridging/Npyridyl (X = Br, I). There are intrachain H-bonding interactions in the structures. The packing of the chains in 1∙2H2O is achieved via π-π stacking interactions, while the 3D architecture of the isomorphous 2 and 3 is built via C-H∙∙∙Cg (Cg is the centroid of one pyridyl ring) and π-π overlaps. The molecular structures of 1∙2H2O and 2 are different compared with their [ZnX2(dpkoxH)] (X = Cl, Br) analogs. The polymeric compounds were characterized by IR and Raman spectroscopies in the solid state, and the data were interpreted in terms of the known molecular structures. The solid-state structures of the complexes are not retained in DMSO, as proven via NMR (1H, 13C, and 113Cd NMR) spectroscopy and molar conductivity data. The complexes completely release the coordinated dpkoxH molecule, and the dominant species in solution seem to be [Cd(DMSO)6]2+ in the case of the chloro and bromo complexes and [CdI2(DMSO)4].
Collapse
Affiliation(s)
- Christina Stamou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.S.); (P.G.); (V.R.)
| | - Pierre Dechambenoit
- Centre de Recherche Paul Pascal, UMR 5031, CNRS, University of Bordeaux, 33600 Pessac, France;
| | - Zoi G. Lada
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece;
| | - Patroula Gkolfi
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.S.); (P.G.); (V.R.)
| | - Vassiliki Riga
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.S.); (P.G.); (V.R.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | - Konstantis F. Konidaris
- Department of Chemistry, Materials Science and Chemical Engineering “Giulio Natta”, Via L. Mancinelli 7, 20131 Milan, Italy
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.S.); (P.G.); (V.R.)
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Platani, P.O. Box 1414, 26504 Patras, Greece;
| |
Collapse
|
2
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
Abstract
In the present review, works on the classes of chelating extractants for metals, compounds with several amide and carboxyl groups, azomethines, oximes, macrocyclic compounds (crown ethers and calixarenes), phenanthroline derivatives, and others are systematized. This review focuses on the efficiency and selectivity of the extractants in the recovery of metals from industrial wastewater, soil, spent raw materials, and the separation of metal mixtures. As a result of this study, it was found that over the past seven years, the largest number of works has been devoted to the extraction of heavy metals with amino acids (16 articles), azomethines and oximes (12 articles), lanthanids with amide compounds (15 articles), lanthanides and actinides with phenanthroline derivatives (7 articles), and noble metals with calixarenes (4 articles). Analysis of the literature showed that amino acids are especially effective for extracting heavy metals from the soil; thiodiglycolamides and aminocalixarenes for extracting noble metals from industrial waste; amide compounds, azomethines, oximes, and phenanthroline derivatives for extracting actinides; amide compounds for extracting lanthanides; crown ethers for extracting radioactive strontium, rhenium and technetium. The most studied parameters of extraction processes in the reviewed articles were the distribution ratios and separation factors. Based on the reviewed articles, it follows that chelate polydentate compounds are more efficient compounds for the extraction of metals from secondary resources compared to monodentate compounds.
Collapse
|
4
|
Routzomani A, Lada ZG, Angelidou V, P. Raptopoulou C, Psycharis V, Konidaris KF, Chasapis CT, Perlepes SP. Confirming the Molecular Basis of the Solvent Extraction of Cadmium(II) Using 2-Pyridyl Oximes through a Synthetic Inorganic Chemistry Approach and a Proposal for More Efficient Extractants. Molecules 2022; 27:1619. [PMID: 35268720 PMCID: PMC8911866 DOI: 10.3390/molecules27051619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the very good liquid extraction ability of 2-pyridyl ketoximes with long aliphatic chains towards toxic Cd(II) and the inability of their 4-pyridyl isomers for this extraction. Our systematic investigation provided access to coordination complexes [CdI2(2paoH)2] (1), {[CdI2(3paoH)2]}n (2), {[CdI2(4paoH)2]}n (3) and [CdI2(dapdoH2)] (4). The reaction of CdI2 and LH4 in EtOH resulted in a Cd(II)-involving reaction of the bis(amidoxime) and isolation of [CdI2(L'H2)] (5), where L'H2 is the new ligand 2,6-bis(ethoxy)pyridine diimine. A mechanism of this transformation has been proposed. The structures of 1, 2, 3, 4·2EtOH and 5 were determined by single-crystal X-ray crystallography. The complexes have been characterized by FT-IR and FT-Raman spectra in the solid state and the data are discussed in terms of structural features. The stability of the complexes in DMSO was investigated by 1H NMR spectroscopy. Our studies confirm that the excellent extraction ability of 2-pyridyl ketoximes is due to the chelating nature of the extractants leading to thermodynamically stable Cd(II) complexes. The monodentate coordination of 4-pyridyl ketoximes (as confirmed in our model complexes with 4paoH and 3paoH) seems to be responsible for their poor performance as extractants.
Collapse
Affiliation(s)
- Anastasia Routzomani
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
| | - Zoi G. Lada
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
| | - Varvara Angelidou
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attikis, 153 10 Athens, Greece;
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, Attikis, 153 10 Athens, Greece;
| | - Konstantis F. Konidaris
- Department of Science and High Technology and INSTM, University of Insubria, 22 100 Como, Italy
| | - Christos T. Chasapis
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, 265 04 Patras, Greece
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 265 04 Patras, Greece; (A.R.); (Z.G.L.); (V.A.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), Platani, P.O. Box 1414, 265 04 Patras, Greece
| |
Collapse
|
5
|
Polyzou CD, Nikolaou H, Raptopoulou CP, Konidaris KF, Bekiari V, Psycharis V, Perlepes SP. Dinuclear Lanthanide(III) Complexes from the Use of Methyl 2-Pyridyl Ketoxime: Synthetic, Structural, and Physical Studies. Molecules 2021; 26:1622. [PMID: 33804026 PMCID: PMC7999197 DOI: 10.3390/molecules26061622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
The first use of methyl 2-pyridyl ketoxime (mepaoH) in homometallic lanthanide(III) [Ln(III)] chemistry is described. The 1:2 reactions of Ln(NO3)3·nH2O (Ln = Nd, Eu, Gd, Tb, Dy; n = 5, 6) and mepaoH in MeCN have provided access to complexes [Ln2(O2CMe)4(NO3)2(mepaoH)2] (Ln = Nd, 1; Ln = Eu, 2; Ln = Gd, 3; Ln = Tb, 4; Ln = Dy, 5); the acetato ligands derive from the LnIII-mediated hydrolysis of MeCN. The 1:1 and 1:2 reactions between Dy(O2CMe)3·4H2O and mepaoH in MeOH/MeCN led to the all-acetato complex [Dy2(O2CMe)6(mepaoH)2] (6). Treatment of 6 with one equivalent of HNO3 gave 5. The structures of 1, 5, and 6 were solved by single-crystal X-ray crystallography. Elemental analyses and IR spectroscopy provide strong evidence that 2-4 display similar structural characteristics with 1 and 5. The structures of 1-5 consist of dinuclear molecules in which the two LnIII centers are bridged by two bidentate bridging (η1:η1:μ2) and two chelating-bridging (η1:η2:μ2) acetate groups. The LnIII atoms are each chelated by a N,N'-bidentate mepaoH ligand and a near-symmetrical bidentate nitrato group. The molecular structure of 6 is similar to that of 5, the main difference being the presence of two chelating acetato groups in the former instead of the two chelating nitrato groups in the latter. The geometry of the 9-coordinate LnIII centers in 1, 5 and 6 can be best described as a muffin-type (MFF-9). The 3D lattices of the isomorphous 1 and 5 are built through H-bonding, π⋯π stacking and C-H⋯π interactions, while the 3D architecture of 6 is stabilized by H bonds. The IR spectra of the complexes are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The Eu(III) complex 2 displays a red, metal-ion centered emission in the solid state; the TbIII atom in solid 4 emits light in the same region with the ligand. Magnetic susceptibility studies in the 2.0-300 K range reveal weak antiferromagnetic intramolecular GdIII…GdIII exchange interactions in 3; the J value is -0.09(1) cm-1 based on the spin Hamiltonian Ĥ = -J(ŜGd1·ŜGd2).
Collapse
Affiliation(s)
- Christina D. Polyzou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
| | - Helen Nikolaou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | | | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Aghia Paraskevi Attikis, Greece;
| | - Spyros P. Perlepes
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (C.D.P.); (H.N.)
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, B.O. Box 1414, 26504 Patras, Greece
| |
Collapse
|
6
|
Tsantis ST, Lagou-Rekka A, Konidaris KF, Raptopoulou CP, Bekiari V, Psycharis V, Perlepes SP. Tetranuclear oxido-bridged thorium(iv) clusters obtained using tridentate Schiff bases. Dalton Trans 2019; 48:15668-15678. [PMID: 31509144 DOI: 10.1039/c9dt03189h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thorium(iv) complexes are currently attracting intense attention from inorganic chemists due to the development of liquid-fluoride thorium reactors and the fact that thorium(iv) is often used as a model system for the study of the more radioactive Np(iv) and Pu(iv). Schiff-base complexes of tetravalent actinides are useful for the development of new separation strategies in nuclear fuel processing and nuclear waste management. Thorium(iv)-Schiff base complexes find applications in the colorimetric detection of this toxic metal ion and the construction of fluorescent on/off sensors for Th(iv) exploiting the ligand-based light emission of its complexes. Clusters of Th(iv) with hydroxide, oxide or peroxide bridges are also relevant to the environmental and geological chemistry of this metal ion. The reactions between Th(NO3)4·5H2O and N-salicylidene-o-aminophenol (LH2) and N-salicylidene-o-amino-4-methylphenol (L'H2) in MeCN have provided access to complexes [Th4O(NO3)2(LH)2(L)5] (1) and [Th4O(NO3)2(L'H)2(L')5] (2) in moderate yields. The structures of 1·4MeCN and 2·2.4 MeCN have been determined by single-crystal X-ray crystallography. The complexes have similar molecular structures possessing the {Th4(μ4-O)(μ-OR')8} core that contains the extremely rare {Th4(μ4-O)} unit. The four ThIV atoms are arranged at the vertexes of a distorted tetrahedron with a central μ4-O2- ion bonded to each metal ion. The H atom of one of the acidic -OH groups of each 3.21 LH- or L'H- ligand is located on the imine nitrogen atom, thus blocking its coordination. The ThIV centres are also held together by one 3.221 L2- or (L')2- group and four 2.211 L2- or (L')2- ligands. The metal ions adopt three different coordination numbers (8, 9, and 10) with a total of four coordination geometries (triangular dodecahedral, muffin, biaugmented trigonal prismatic, and sphenocorona). A variety of H-bonding interactions create 1D chains and 2D layers in the crystal structures of 1·4 MeCN and 2·2.4 MeCN, respectively. The structures of the complexes are compared with those of the uranyl complexes with the same or similar ligands. Solid-state and IR data are discussed in terms of the coordination mode of the organic ligands and the nitrato groups. 1H NMR data suggest that solid-state structures are not retained in DMSO. The solid complexes emit green light at room temperature upon excitation at 400 nm, the emission being ligand-centered.
Collapse
Affiliation(s)
| | | | - Konstantis F Konidaris
- Department of Chemistry, University of Patras, 26504, Patras, Greece. and School of Agriculture Sciences, University of Patras, 30200 Messolonghi, Greece.
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi Attikis, Greece.
| | - Vlasoula Bekiari
- School of Agriculture Sciences, University of Patras, 30200 Messolonghi, Greece.
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi Attikis, Greece.
| | - Spyros P Perlepes
- Department of Chemistry, University of Patras, 26504, Patras, Greece. and Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, P.O. Box 144, 26504 Patras, Greece
| |
Collapse
|