1
|
Meng L, Yang P, Zhang W, Zhang X, Rong X, Liu H, Li M. Brain-derived neurotrophic factor promotes orthodontic tooth movement by alleviating periodontal ligament stem cell senescence. Cell Signal 2023; 108:110724. [PMID: 37211081 DOI: 10.1016/j.cellsig.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Orthodontic treatment in older adults is more difficult than in younger adults, partially due to delayed osteogenesis caused by senescence of human periodontal ligament stem cells (hPDLSCs). The production of brain-derived neurotrophic factor (BDNF) which regulates the differentiation and survival of stem cells decreases with age. We aimed to investigate the relationship between BDNF and hPDLSC senescence and its effects on orthodontic tooth movement (OTM). We constructed mouse OTM models using orthodontic nickel‑titanium springs and compared the responses of wild-type (WT) and BDNF+/- mice with or without addition of exogenous BDNF. In vitro, hPDLSCs subjected to the mechanical stretch were used to simulate the cell stretch environment during OTM. We extracted periodontal ligament cells from WT and BDNF+/- mice to evaluate their senescence-related indicators. The application of orthodontic force increased BDNF expression in the periodontium of WT mice, while the mechanical stretch increased BDNF expression in hPDLSCs. Osteogenesis-related indicators, including RUNX2 and ALP decreased and cellular senescence-related indicators such as p16, p53 and β-galactosidase increased in BDNF+/- mice periodontium. Furthermore, periodontal ligament cells extracted from BDNF+/- mice exhibited more senescent compared with cells from WT mice. Application of exogenous BDNF decreased the expression of senescence-related indicators in hPDLSCs by inhibiting Notch3, thereby promoting osteogenic differentiation. Periodontal injection of BDNF decreased the expression of senescence-related indicators in periodontium of aged WT mice. In conclusion, our study showed that BDNF promotes osteogenesis during OTM by alleviating hPDLSCs senescence, paving a new path for future research and clinical applications.
Collapse
Affiliation(s)
- Lingxiao Meng
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Panpan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021 Jinan, China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Xin Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Xing Rong
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China.
| |
Collapse
|
2
|
Deng L, Lai S, Fan L, Li X, Huang H, Mu Y. miR-210-3p suppresses osteogenic differentiation of MC3T3-E1 by targeting brain derived neurotrophic factor (BDNF). J Orthop Surg Res 2022; 17:418. [PMID: 36104705 PMCID: PMC9476565 DOI: 10.1186/s13018-022-03315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/01/2022] Open
Abstract
Background and objective As an important mediator of intercellular interaction and formation of extracellular bone matrix, porous scaffolds are widely used for bone regeneration. Accumulating evidences demonstrate that microRNA are involved in the regulation of scaffolds-induced bone regeneration. Recently, we revealed that miR-210-3p was highly expressed during osteogenesis induced by HAG. In present study, we further explored the molecular mechanism underlying the effect of miR-210-3p on osteogenic differentiation. Materials and methods In this study, miR-210-3p mimics and inhibitors were synthesized and transfected into MC3T3-E1 cells to explore their effects on osteogenic differentiation. The expression of osteogenic marker (Alp and Runx2) were detected by real-time quantitative PCR (qRT-PCR) and western blotting. After osteogenesis induction for 7 days, Alp staining were used to detected osteoblast differentiation of MC3T3-E1 cells. CCK8 and Transwell assays were performed to detected cell proliferation and migration. Then, top ranking list of target genes of miR-210-3p obtained from TargetScan and the expression of BDNF were detected by qRT-PCR and ELISA. The relationship between miR-210-3p and BDNF was verified by luciferase report assay. Furthermore, the effect of BDNF on osteoblast differentiation was verified by transfecting siRNA or adding BDNF to the culture medium. Results MiR-210-3p mimics markedly suppress osteogenic differentiation, cell migration and cell proliferation of MC3T3-E; nevertheless, silencing of miR-210-3p dramatically enhanced MC3T3-E1 osteogenesis, cell migration and proliferation. Furthermore, luciferase reporter assay verified that brain derived neurotrophic factor (BDNF) is a directly target of miR-210-3p. Moreover, BDNF siRNA significantly decreased the expression levels of ALP and cell migration. The addition of BDNF partially rescued the inhibition of osteogenesis by miR-210-3p. Conclusion miR-210-3p inhibited the osteogenic differentiation via targeting BDNF. Our Results provide a promising target for regulating osteogenic differentiation.
Collapse
|
3
|
Aglan HA, Fouad-Elhady EA, Hassan RE, Sabry GM, Ahmed HH. Nanoplatforms for Promoting Osteogenesis in Ovariectomy-Induced
Osteoporosis in the Experimental Model. CURRENT NANOMEDICINE 2022; 12:44-62. [DOI: 10.2174/2468187312666220217104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 01/05/2025]
Abstract
Background:
Osteoporosis is a debilitating bone ailment characterized by the obvious loss of bone mass and bone microarchitecture impairment.
Objective:
This study aimed to illuminate the in vivo usefulness of nanotechnology as a treatment for osteoporosis via analyzing the effectiveness of nano-hydroxyapatite (nHa), nano-hydroxy- apatite/chitosan (nHa/C), and nano-hydroxyapatite/silver (nHa/S) in mitigation of osteoporosis in ovariectomized rats.
Method:
The characterization of the nHa, nHa/C, and nHa/S was carried out using TEM, SEM, FTIR, and Zeta potential measurements. This in vivo study included 48 adult female rats that were randomized into six groups (8 rats/group): (1) Sham-operated control, (2) osteoporotic, (3) nHa, (4) nHa/C, (5) nHa/S, and (6) Fosamax®. Serum osterix level was quantified using ELISA. Femur bone morphogenetic protein 2 and SMAD1 mRNA levels were evaluated by qPCR. The femur bones were scanned by DEXA for measurement of bone mineral density and bone mineral content. In ad-dition, a histopathological examination of femur bones was performed.
Results:
The present approach denoted that the treatment with nHa, nHa/C, or nHa/S yields a signif-icant rise in serum level of osterix and mRNA levels of bone morphogenetic protein 2 and SMAD1 as well as significant enhancements of bone tissue minerals.
Conclusion:
The findings affirmed the potency of nHa, nHa/C, and nHa/S as auspicious nanoplat-forms for repairing bone defects in the osteoporotic rat model. The positive effect of the inspected nanoformulations arose from bone formation indicators in serum and tissue, and additionally, the reinforcement of bone density and content, which were verified by the histopathological description of bone tissue sections.
Collapse
Affiliation(s)
- Hadeer A. Aglan
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | | | - Rasha E. Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gilane M. Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H. Ahmed
- Hormones Department, Medicine and Clinical Studies Research Institute, National Research Centre, Giza, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Loy TL, Vehlow D, Kauschke V, Müller M, Heiss C, Lips KS. Effects of BDNF and PEC Nanoparticles on Osteocytes. Molecules 2020; 25:molecules25184151. [PMID: 32927875 PMCID: PMC7570603 DOI: 10.3390/molecules25184151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Bone substitute materials loaded with mediators that stimulate fracture healing are demanded in the clinical treatment in trauma surgery and orthopedics. Brain-derived neurotrophic factor (BDNF) enhances the proliferation and differentiation of mesenchymal stem cells into osteoblast. To load the implants with BDNF, a drug delivery system that allows the release of BDNF under spatiotemporal control would improve functionality. Polyelectrolyte complex nanoparticles (PECNP) have been reported as a suitable drug delivery system. The suitability of PECNP in contact with osteocytes as the main cell type of bone is not known so far. Thus, we aimed to verify that BDNF and PECNP loaded with BDNF (PECNP+BDNF) as well as pure PECNP have no negative effects on osteocytes in vitro. Therefore, the murine osteocyte cell line MLO-Y4 was treated with BDNF and PECNP+BDNF. The effects on proliferation were analyzed by the BrdU test (n = 5). The results demonstrated a significant increase in proliferation 24 h after BDNF application, whereas PECNP+BDNF did not lead to significant changes. Thus, we conclude that BDNF is an appropriate mediator to stimulate osteocytes. Since the addition of PECNP did not affect the viability of osteocytes, we conclude that PECNP are a suitable drug delivery system for bone implants.
Collapse
Affiliation(s)
- Thomas Leonhard Loy
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
| | - David Vehlow
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research, 01069 Dresden, Germany; (D.V.); (M.M.)
| | - Vivien Kauschke
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
| | - Martin Müller
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research, 01069 Dresden, Germany; (D.V.); (M.M.)
| | - Christian Heiss
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen-Marburg GmbH, Campus Giessen, 35392 Giessen, Germany
| | - Katrin Susanne Lips
- Experimental Trauma Surgery, Justus-Liebig-University, 35392 Giessen, Germany; (T.L.L.); (V.K.); (C.H.)
- Correspondence: ; Tel.: +49-641-99-30580
| |
Collapse
|
5
|
Oprea M, Voicu SI. Recent advances in composites based on cellulose derivatives for biomedical applications. Carbohydr Polym 2020; 247:116683. [PMID: 32829811 DOI: 10.1016/j.carbpol.2020.116683] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023]
Abstract
Cellulose derivatives represent a viable alternative to pure cellulose due to their solubility in water and common organic solvents. This, coupled with their low cost, biocompatibility, and biodegradability, makes them an attractive choice for applications related to the biomedicine and bioanalysis area. Cellulose derivatives-based composites with improved properties were researched as films and membranes for osseointegration, hemodialysis and biosensors, smart textile fibers, tissue engineering scaffolds, hydrogels and nanoparticles for drug delivery. The different preparation strategies of these polymeric composites as well as the most recent available experimental results were described in this review. General aspects such as structure and properties of cellulose extracted from plants or bacterial sources, types of cellulose derivatives and their synthesis methods were also discussed. Finally, the future perspectives related to composites based on cellulose derivatives were highlighted and some conclusions regarding the reviewed applications were drawn.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania; Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| |
Collapse
|