1
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
2
|
Sakata Y, Nabekura R, Hazama Y, Hanya M, Nishiyama T, Kii I, Hosoya T. Synthesis of Functionalized Dibenzoazacyclooctynes by a Decomplexation Method for Dibenzo-Fused Cyclooctyne-Cobalt Complexes. Org Lett 2023; 25:1051-1055. [PMID: 36511709 DOI: 10.1021/acs.orglett.2c03832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A concise route for dibenzoazacyclooctynes (DIBACs) synthesis was developed based on Pictet-Spengler reaction and a novel cobalt decomplexation method established for dibenzo-fused cyclooctyne-cobalt complexes. The method allowed for the facile preparation of functionalized DIBACs, including bisDIBAC, which served as an efficient bisreactive linker for protein modification via the double-click reaction.
Collapse
Affiliation(s)
- Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ryoto Nabekura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yuki Hazama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Miho Hanya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Nishiyama
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Isao Kii
- Laboratory for Drug Target Research, Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano 399-4598, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
3
|
Akbari A, Faryabi MS, Tomar R. Efficient method for the synthesis of novel methyl 4-cinnolinecarboxylate. Mol Divers 2022:10.1007/s11030-022-10497-3. [PMID: 35864428 DOI: 10.1007/s11030-022-10497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
A new method is designed for the synthesis of some novel methyl 3-aryl/alkyl-4-cinnolinecarboxylate with developed a general Richter cyclization through diazotization strategy of commercially available 2-aryl/alkyl ethynyl aniline and methyl acetate. Most substrates were achieved in moderate to excellent yields in one-pot procedures under mild reaction conditions.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 8767161167, Jiroft, Iran.
| | - Muhammad Saleh Faryabi
- Department of Chemistry, Faculty of Science, University of Jiroft, P. O. Box 8767161167, Jiroft, Iran
| | - Ravi Tomar
- Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana, 122505, India.
| |
Collapse
|
4
|
Danilkina NA, Andrievskaya EV, Vasileva AV, Lyapunova AG, Rumyantsev AM, Kuzmin AA, Bessonova EA, Balova IA. 4-Azidocinnoline-Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules 2021; 26:7460. [PMID: 34946541 PMCID: PMC8704291 DOI: 10.3390/molecules26247460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
A new type of fluorogenic and fluorochromic probe based on the reduction of weakly fluorescent 4-azido-6-(4-cyanophenyl)cinnoline to the corresponding fluorescent cinnoline-4-amine was developed. We found that the fluorescence of 6-(4-cyanophenyl)cinnoline-4-amine is strongly affected by the nature of the solvent. The fluorogenic effect for the amine was detected in polar solvents with the strongest fluorescence increase in water. The environment-sensitive fluorogenic properties of cinnoline-4-amine in water were explained as a combination of two types of fluorescence mechanisms: aggregation-induced emission (AIE) and excited state intermolecular proton transfer (ESPT). The suitability of an azide-amine pair as a fluorogenic probe was tested using a HepG2 hepatic cancer cell line with detection by fluorescent microscopy, flow cytometry, and HPLC analysis of cells lysates. The results obtained confirm the possibility of the transformation of the azide to amine in cells and the potential applicability of the discovered fluorogenic and fluorochromic probe for different analytical and biological applications in aqueous medium.
Collapse
Affiliation(s)
- Natalia A. Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | | | - Anna V. Vasileva
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | - Anna G. Lyapunova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | - Andrey M. Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia;
| | - Andrey A. Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Tikhoretsky Avenue 4, 194064 Saint Petersburg, Russia;
| | - Elena A. Bessonova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | - Irina A. Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| |
Collapse
|
5
|
Mikhaylov VN, Pavlov AO, Ogorodnov YV, Spiridonova DV, Sorokoumov VN, Balova IA. N-Propargylation and Copper(I)-Catalyzed Azide-Alkyne Cycloaddition as a Convenient Strategy for Directed Post-Synthetic Modification of 4-Oxo-1,4-Dihydrocinnoline Derivatives. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02750-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
El-Marrouki D, Touchet S, Abdelli A, M’Rabet H, Lotfi Efrit M, Gros PC. Tuneable access to indole, indolone, and cinnoline derivatives from a common 1,4-diketone Michael acceptor. Beilstein J Org Chem 2020; 16:1722-1731. [PMID: 32733616 PMCID: PMC7372239 DOI: 10.3762/bjoc.16.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
A convergent strategy is reported for the construction of nitrogen-containing heterocycles from common substrates: 1,4-diketones and primary amines. Indeed, by just varying the substrates, the substituents, or the heating mode, it is possible to selectively synthesize indole, indolone (1,5,6,7-tetrahydroindol-4-one), or cinnoline (5,6,7,8-tetrahydrocinnoline) derivatives in moderate to excellent yields.
Collapse
Affiliation(s)
- Dalel El-Marrouki
- Université de Lorraine, CNRS, L2CM, F-5400 Nancy, France
- Université de Tunis El Manar, SOHES-LR17ES01, Tunis, Tunisia
| | | | | | - Hédi M’Rabet
- Université de Tunis El Manar, SOHES-LR17ES01, Tunis, Tunisia
| | | | | |
Collapse
|
7
|
Favi G. Modern Strategies for Heterocycle Synthesis. Molecules 2020; 25:molecules25112476. [PMID: 32471057 PMCID: PMC7321172 DOI: 10.3390/molecules25112476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino (PU), Italy
| |
Collapse
|