1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
3
|
Wang ZX, Xu Y, Gilmour R. Regioselective fluorination of allenes enabled by I(I)/I(III) catalysis. Nat Commun 2024; 15:5770. [PMID: 38982181 PMCID: PMC11233658 DOI: 10.1038/s41467-024-50227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
The prominence and versatility of propargylic fluorides in medicinal chemistry, coupled with the potency of F/H and F/OH bioisosterism, has created a powerful impetus to develop efficient methods to facilitate their construction. Motivated by the well-established conversion of propargylic alcohols to allenes, an operationally simple, organocatalysis-based strategy to process these abundant unsaturated precursors to propargylic fluorides would be highly enabling: this would consolidate the bioisosteric relationship that connects propargylic alcohols and fluorides. Herein, we describe a highly regioselective fluorination of unactivated allenes based on I(I)/I(III) catalysis in the presence of an inexpensive HF source that serves a dual role as both nucleophile and Brønsted acid activator. This strategy enables a variety of secondary and tertiary propargylic fluorides to be prepared: these motifs are prevalent across the bioactive small molecule spectrum. Facile product derivatisation, concise synthesis of multi-vicinal fluorinated products together with preliminary validation of enantioselective catalysis are disclosed. The expansive potential of this platform is also demonstrated through the highly regioselective organocatalytic oxidation, chlorination and arylation of allenes. It is envisaged that the transformation will find application in molecular design and accelerate the exploration of organofluorine chemical space.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Yameng Xu
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany
| | - Ryan Gilmour
- Institute for Organic Chemistry, University of Münster, Corrensstraße 36, 48149, Münster, Germany.
| |
Collapse
|
4
|
Chhikara A, Wu F, Kaur N, Baskaran P, Nguyen AM, Yin Z, Pham AH, Li W. Hypervalent iodine-catalyzed amide and alkene coupling enabled by lithium salt activation. Beilstein J Org Chem 2024; 20:1405-1411. [PMID: 38952958 PMCID: PMC11216091 DOI: 10.3762/bjoc.20.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Hypervalent iodine catalysis has been widely utilized in olefin functionalization reactions. Intermolecularly, the regioselective addition of two distinct nucleophiles across the olefin is a challenging process in hypervalent iodine catalysis. We introduce here a unique strategy using simple lithium salts for hypervalent iodine catalyst activation. The activated hypervalent iodine catalyst allows the intermolecular coupling of soft nucleophiles such as amides onto electronically activated olefins with high regioselectivity.
Collapse
Affiliation(s)
- Akanksha Chhikara
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fan Wu
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Navdeep Kaur
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Prabagar Baskaran
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Alex M Nguyen
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Zhichang Yin
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Anthony H Pham
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Wei Li
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
5
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
6
|
Kim MJ, Targos K, Holst DE, Wang DJ, Wickens ZK. Alkene Thianthrenation Unlocks Diverse Cation Synthons: Recent Progress and New Opportunities. Angew Chem Int Ed Engl 2024; 63:e202314904. [PMID: 38329158 PMCID: PMC11503931 DOI: 10.1002/anie.202314904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Indexed: 02/09/2024]
Abstract
Oxidative alkene functionalization reactions are a fundamental class of complexity-building organic transformations. However, the majority of established approaches rely on electrophilic reagents that limit the diversity of groups that can be installed. Recent advances have established a new approach that instead relies on the transformation of alkenes into thianthrene-derived cationic electrophiles. These linchpin intermediates can be generated selectively and undergo a diverse array of mechanistically distinct reactions with abundant nucleophiles. Taken together, this unlocks a suite of net oxidative alkene transformations that have been elusive using conventional strategies. This Minireview describes these advances and is organized around the three distinct synthons formally accessible from alkenes via thianthrenation: 1) alkenyl cations; 2) vicinal dications; 3) allyl cations. Throughout the Minireview, we illustrate how thianthrenium salts address key limitations endemic to classic alkene-derived electrophiles and highlight the mechanistic origins of these distinctions wherever possible.
Collapse
Affiliation(s)
| | | | - Dylan E. Holst
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| | - Diana J. Wang
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| | - Zachary K. Wickens
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706 (USA)
| |
Collapse
|
7
|
Kumar R. Transition-Metal-Catalyzed 1,2-Diaminations of Olefins: Synthetic Methodologies and Mechanistic Studies. Chem Asian J 2024; 19:e202300705. [PMID: 37743249 DOI: 10.1002/asia.202300705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
1,2-Diamines are synthetically important motifs in organo-catalysis, natural products, and drug research. Continuous utilization of transition-metal based catalyst in direct 1,2-diamination of olefines, in contrast to metal-free transformations, with numerous impressive advances made in recent years (2015-2023). This review summarized contemporary research on the transition-metal catalyzed/mediated [e. g., Cu(II), Pd(II), Fe(II), Rh(III), Ir(III), and Co(II)] 1,2-diamination (asymmetric and non-asymmetric) especially emphasizing the recent synthetic methodologies and mechanistic understandings. Moreover, up-to-date discussion on (i) paramount role of oxidant and catalyst (ii) key achievements (iii) generality and uniqueness, (iv) synthetic limitations or future challenges, and (v) future opportunities are summarized related to this potential area.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, INDIA
| |
Collapse
|
8
|
Pal K, Chandu P, Das D, Jinilkumar AV, Mallick M, Sureshkumar D. Organophotocatalyzed Mono- and Bis-Alkyl/Difluoroalkylative Thio/Selenocyanation of Alkenes. J Org Chem 2023. [PMID: 37988569 DOI: 10.1021/acs.joc.3c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Organophotocatalyzed three-component 1,2-difluoroacetyl/alkyl/perfluoroalkylative thio/selenocyanation of styrene derivatives under stoichiometric, transition metal-, oxidant-, and additive-free, and mild redox-neutral conditions is reported. Organophotocatalyst 4CzIPN operates the overall radical-polar-crossover mechanistic cycle via initial oxidative luminescence quenching, and the key intermediates were experimentally detected. Selective mono-alkylative thiocyanation of alkenes using dibromoalkanes is also demonstrated. This one-pot synthetic methodology is suitable for primary, secondary, and tertiary alkyl halides and also extended for double alkylative thiocyanation of the dibromoalkanes with excellent yields.
Collapse
Affiliation(s)
- Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Aliya V Jinilkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Manasi Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
9
|
Wang ZX, Livingstone K, Hümpel C, Daniliuc CG, Mück-Lichtenfeld C, Gilmour R. Regioselective, catalytic 1,1-difluorination of enynes. Nat Chem 2023; 15:1515-1522. [PMID: 37845310 PMCID: PMC10624631 DOI: 10.1038/s41557-023-01344-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Fluorinated small molecules are prevalent across the functional small-molecule spectrum, but the scarcity of naturally occurring sources creates an opportunity for creative endeavour in developing routes to access these important materials. Iodine(I)/iodine(III) catalysis has proven to be particularly well-suited to this task, enabling abundant alkene substrates to be readily intercepted by in situ-generated λ3-iodanes and processed to high-value (di)fluorinated products. These organocatalysis paradigms often emulate metal-based processes by engaging the π bond and, in the case of styrenes, facilitating fluorinative phenonium-ion rearrangements to generate difluoromethylene units. Here we demonstrate that enynes are competent proxies for styrenes, thereby mitigating the recurrent need for aryl substituents, and enabling highly versatile homopropargylic difluorides to be generated in an operationally simple manner. The scope of the method is disclosed, together with application in target synthesis (>30 examples, up to >90% yield).
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Keith Livingstone
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Carla Hümpel
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | | | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Cells in Motion (CiM) Interfaculty Center, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
10
|
Lopat'eva ER, Krylov IB, Paveliev SA, Emtsov DA, Kostyagina VA, Korlyukov AA, Terent'ev AO. Free Radicals in the Queue: Selective Successive Addition of Azide and N-Oxyl Radicals to Alkenes. J Org Chem 2023; 88:13225-13235. [PMID: 37616501 DOI: 10.1021/acs.joc.3c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The selective successive addition of azide (•N3) and N-oxyl radicals to alkenes is demonstrated, despite each of the two radicals being known to attack C═C bonds and the mixture of radical adducts possibly being expected. The proposed radical mechanism was supported by density functional theory calculations, electron paramagnetic resonance, and radical trapping experiments. The reaction proceeds at room temperature with the available reagents: NaN3, N-hydroxy compounds, and PhI(OAc)2 as the oxidant. The method can be applied for N-hydroxyimides, N-hydroxyamides, N-hydroxybenzotriazole, and oximes as N-oxyl radical precursors. Vinylarenes, aliphatic alkenes, and even electron-deficient methyl methacrylate were successfully functionalized.
Collapse
Affiliation(s)
- Elena R Lopat'eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
| | - Daniil A Emtsov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Vera A Kostyagina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov strasse, 28, 119991 Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospekt, 119991 Moscow, Russia
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
11
|
Shetgaonkar SE, Jothish S, Dohi T, Singh FV. Iodine(V)-Based Oxidants in Oxidation Reactions. Molecules 2023; 28:5250. [PMID: 37446912 DOI: 10.3390/molecules28135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The chemistry of hypervalent iodine reagents has now become quite valuable due to the reactivity of these compounds under mild reaction conditions and their resemblance in chemical properties to transition metals. The environmentally friendly nature of these reagents makes them suitable for Green Chemistry. Reagents with a dual nature, such as iodine(III) reagents, are capable electrophiles, while iodine(V) reagents are known for their strong oxidant behavior. Various iodine(V) reagents including IBX and DMP have been used as oxidants in organic synthesis either in stoichiometric or in catalytic amounts. In this review article, we describe various oxidation reactions induced by iodine(V) reagents reported in the past decade.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Subhiksha Jothish
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-0058, Shiga, Japan
| | - Fateh V Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| |
Collapse
|
12
|
Holst DE, Dorval C, Winter CK, Guzei IA, Wickens ZK. Regiospecific Alkene Aminofunctionalization via an Electrogenerated Dielectrophile. J Am Chem Soc 2023. [PMID: 37023348 DOI: 10.1021/jacs.3c01137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Modular strategies to rapidly increase molecular complexity have proven immensely synthetically valuable. In principle, transformation of an alkene into a dielectrophile presents an opportunity to deliver two unique nucleophiles across an alkene. Unfortunately, the selectivity profiles of known dielectrophiles have largely precluded this deceptively simple synthetic approach. Herein, we demonstrate that dicationic adducts generated through electrolysis of alkenes and thianthrene possess a unique selectivity profile relative to more conventional dielectrophiles. Specifically, these species undergo a single and perfectly regioselective substitution reaction with phthalimide salts. This observation unlocks an appealing new platform for aminofunctionalization reactions. As an illustrative example, we implement this new reactivity paradigm to address a longstanding synthetic challenge: alkene diamination with two distinct nitrogen nucleophiles. Studies into the mechanism of this process reveal a key alkenyl thianthrenium salt intermediate that controls the exquisite regioselectivity of the process and highlight the importance of proton sources in controlling the reactivity of alkenyl sulfonium salt electrophiles.
Collapse
Affiliation(s)
- Dylan E Holst
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Céline Dorval
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Casey K Winter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Kumar R, Khanna Y, Kaushik P, Kamal R, Khokhar S. Recent Advancements on Metal-Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chem Asian J 2023; 18:e202300017. [PMID: 36869415 DOI: 10.1002/asia.202300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/05/2023]
Abstract
The oxidative aminative vicinal difunctionalization of alkenes or related chemical feedstocks has emerged as sustainable and multipurpose strategies that can efficiently construct two -N bonds, and simultaneously prepare the synthetically fascinating molecules and catalysis in organic synthesis that typically required multi-step reactions. This review summarized the impressive breakthroughs on synthetic methodologies (2015-2022) documented especially over inter/intra-molecular vicinal diamination of alkenes with electron-rich or deficient diverse nitrogen sources. These unprecedented strategies predominantly involved iodine-based reagents/catalysts, which resent the interest of organic chemists due to their impressive role as flexible, non-toxic, and environmentally friendly reagents, resulting in a wide variety of synthetically useful organic molecules. Moreover, the information collected also describes the significant role of catalyst, terminal oxidant, substrate scope, synthetic applications, and their unsuccessful results to highlight the limitations. Special emphasis has been given to proposed mechanistic pathways to determine the key factors governing the issues of regioselectivity, enantioselectivity, and diastereoselectivity ratios.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Yugam Khanna
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Parul Kaushik
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (INDIA
| | - Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| | - Shiwani Khokhar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, INDIA
| |
Collapse
|
14
|
Elsherbini M, Moran WJ. Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species. J Org Chem 2023; 88:1424-1433. [PMID: 36689352 PMCID: PMC9903329 DOI: 10.1021/acs.joc.2c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A simple catalytic electrosynthetic protocol for oxidative transformations mediated by hypervalent iodine reagents has been developed. In this protocol, electricity drives the iodine(I)/iodine(III) catalytic cycle enabling catalysis with in situ generated hypervalent iodine species, thereby eliminating chemical oxidants and the inevitable chemical waste associated with their mode of action. In addition, no added electrolytic salts are needed in this process. The developed method has been validated using two different hypervalent iodine-mediated transformations: (i) the oxidative cyclization of N-allylic and N-homoallylic amides to the corresponding dihydrooxazole and dihydro-1,3-oxazine derivatives, respectively, and (ii) the α-tosyloxylation of ketones. Both reactions proceeded smoothly under the developed catalytic electrosynthetic conditions without reoptimization, featuring a wide substrate scope and excellent functional group tolerance. In addition, scale-up to gram-scale and catalyst recovery were easily achieved maintaining the high efficiency of the process.
Collapse
|
15
|
Yu Y, Schäfer M, Daniliuc CG, Gilmour R. Catalytic, Regioselective 1,4-Fluorodifunctionalization of Dienes. Angew Chem Int Ed Engl 2023; 62:e202214906. [PMID: 36345795 PMCID: PMC10107283 DOI: 10.1002/anie.202214906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Indexed: 11/09/2022]
Abstract
A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.
Collapse
Affiliation(s)
- You‐Jie Yu
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Michael Schäfer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Ryan Gilmour
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
16
|
Sihag M, Soni R, Rani N, Kinger M, Kumar Aneja D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment I. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Monika Sihag
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Rinku Soni
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Neha Rani
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India
| |
Collapse
|
17
|
Cheng XY, Zhang YF, Wang JH, Gu QS, Li ZL, Liu XY. A Counterion/Ligand-Tuned Chemo- and Enantioselective Copper-Catalyzed Intermolecular Radical 1,2-Carboamination of Alkenes. J Am Chem Soc 2022; 144:18081-18089. [PMID: 36153984 DOI: 10.1021/jacs.2c08035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The copper-catalyzed enantioselective intermolecular radical 1,2-carboamination of alkenes with readily accessible alkyl halides is an appealing strategy for producing chiral amine scaffolds. The challenge arises from the easily occurring atom transfer radical addition between alkyl halides and alkenes and the issue of enantiocontrol. We herein describe a radical alkene 1,2-carboamination with sulfoximines in a highly chemo- and enantioselective manner. The key to the success of this process is the conceptual design of a counterion/highly sterically demanded ligand coeffect to promote the ligand exchange of copper(I) with sulfoximines and forge chiral C-N bonds between alkyl radicals and the chiral copper(II) complex. The reaction covers alkenes bearing distinct electronic properties, such as aryl-, heteroaryl-, carbonyl-, and aminocarbonyl-substituted ones, and various radical precursors, including alkyl chlorides, bromides, iodides, and the CF3 source. Facile transformations deliver many chiral amine building blocks of interest in organic synthesis and related areas.
Collapse
Affiliation(s)
- Xian-Yan Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Feng Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Huan Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
19
|
Dhungana RK, Granados A, Sharique M, Majhi J, Molander GA. A three-component difunctionalization of N-alkenyl amides via organophotoredox radical-polar crossover. Chem Commun (Camb) 2022; 58:9556-9559. [PMID: 35930003 PMCID: PMC10443537 DOI: 10.1039/d2cc04101d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Herein, we report a three-component organophotoredox coupling of N-alkenyl amides with α-bromocarbonyls and various nucleophiles. This transition metal-free difunctionalization protocol installs sequential C-C and C-Y (Y = S/O/N) bonds in alkenes. This reaction works with terminal and internal alkenes containing both cyclic and acyclic amides via radical-polar crossover.
Collapse
Affiliation(s)
- Roshan K Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, 19104-6323, USA.
| |
Collapse
|
20
|
Granados A, Dhungana RK, Sharique M, Majhi J, Molander GA. From Styrenes to Fluorinated Benzyl Bromides: A Photoinduced Difunctionalization via Atom Transfer Radical Addition. Org Lett 2022; 24:4750-4755. [PMID: 35766376 PMCID: PMC10412001 DOI: 10.1021/acs.orglett.2c01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple and practical method is disclosed to achieve the difunctionalization of styrenes, generating fluorinated benzyl bromides via a photoinduced atom transfer radical addition process. The developed method is mild, atom-economical, cost-effective, employs very low photocatalyst loading (1000 ppm), and is highly compatible with a broad range of functional groups on styrene. The versatility of the fluorinated benzyl bromides is demonstrated through their derivatization to a variety of valuable compounds.
Collapse
Affiliation(s)
| | | | | | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
21
|
Payne JL, Deng Z, Flach AL, Johnston JN. Enantioselective iodolactonization to prepare ε-lactone rings using hypervalent iodine. Chem Sci 2022; 13:7318-7324. [PMID: 35799806 PMCID: PMC9214890 DOI: 10.1039/d2sc01587k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the rapid growth of enantioselective halolactonization reactions in recent years, most are effective only when forming smaller (6,5,4-membered) rings. Seven-membered ε-lactones, are rarely formed with high selectivity, and never without conformational bias. We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA). We describe the first highly enantioselective 7-exo-trig iodolactonizations of conformationally unbiased ε-unsaturated carboxylic acids, effected by an unusual combination of a bifunctional BAM catalyst, I2, and I(iii) reagent (PhI(OAc)2:PIDA).![]()
Collapse
Affiliation(s)
- Jenna L Payne
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Zihang Deng
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Andrew L Flach
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| | - Jeffrey N Johnston
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University Nashville Tennessee 37235-1822 USA
| |
Collapse
|
22
|
Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123900. [PMID: 35745020 PMCID: PMC9230104 DOI: 10.3390/molecules27123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of polyvalent iodine compounds has piqued the interest of researchers due to their role as important and flexible reagents in synthetic organic chemistry, resulting in a broad variety of useful organic molecules. These chemicals have potential uses in various functionalization procedures due to their non-toxic and environmentally friendly properties. As they are also strong electrophiles and potent oxidizing agents, the use of hypervalent iodine reagents in palladium-catalyzed transformations has received a lot of attention in recent years. Extensive research has been conducted on the subject of C—H bond functionalization by Pd catalysis with hypervalent iodine reagents as oxidants. Furthermore, the iodine(III) reagent is now often used as an arylating agent in Pd-catalyzed C—H arylation or Heck-type cross-coupling processes. In this article, the recent advances in palladium-catalyzed oxidative cross-coupling reactions employing hypervalent iodine reagents are reviewed in detail.
Collapse
|
23
|
Tang P, Wen L, Ma HJ, Yang Y, Jiang Y. Synthesis of acyloxy-2 H-azirine and sulfonyloxy-2 H-azirine derivatives via a one-pot reaction of β-enamino esters, PIDA and carboxylic acid or sulfonic acid. Org Biomol Chem 2022; 20:3061-3066. [PMID: 35344576 DOI: 10.1039/d2ob00364c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PIDA mediated oxidative acyloxylation/azirination and sulfonyloxylation/azirination of β-enamino esters were investigated. A series of functionalized acyloxy-2H-azirine and sulfonyloxy-2H-azirine derivatives was synthesized in moderate to good yields. This represents the first oxidative sulfonyloxylation/azirination of β-enamino esters with PIDA and sulfonic acid for access to sulfonyloxy-2H-azirine. Hypervalent iodine reagents enable cascade C-O/C-N bond formation. Furthermore, a possible reaction pathway was proposed based on the experimental results.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
24
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
25
|
Yang Y, Liu L, Li K, Zha Z, Sun Q, Wang Z. Iodine-mediated oxythiolation of o-vinylanilides with disulfides for the synthesis of benzoxazines. RSC Adv 2022; 12:7347-7351. [PMID: 35424675 PMCID: PMC8982212 DOI: 10.1039/d2ra01078j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient iodine-mediated oxythiolation of o-vinylanilides with disulfides was developed. By virtue of this method, a series of thio-tethered benzoxazine derivatives were synthesized in good to excellent yields. The reaction features high yields, is metal-free, and has a wide substrate scope. An efficient iodine-mediated oxythiolation of o-vinylanilides with disulfides was developed. The reaction features high yields, is metal-free, and has a wide substrate scope.![]()
Collapse
Affiliation(s)
- Yu Yang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei, 230601, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Liyan Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kuiliang Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qi Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
26
|
Paveliev SA, Segida OO, Dvoretskiy A, Dzyunov MM, Fedorova UV, Terent'ev AO. Electrifying Phthalimide- N-Oxyl (PINO) Radical Chemistry: Anodically Induced Dioxygenation of Vinyl Arenes with N-Hydroxyphthalimide. J Org Chem 2021; 86:18107-18116. [PMID: 34878276 DOI: 10.1021/acs.joc.1c02367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An electrochemical process of free-radical difunctionalization of vinyl arenes with N-hydroxyphthalimide resulting in vicinal dioxyphthalimides was discovered. The reaction proceeds with the use of pyridinium perchlorate and pyridine as a supporting electrolyte and a base, respectively. The present approach involves the anodic generation of stabilized phthalimide-N-oxyl (PINO) radical, which adds to the carbon-carbon double bond of vinyl arenes and recombines with the subsequently formed benzylic radical. A wide range of dioxyphthalimides were obtained in yields up to 81%.
Collapse
Affiliation(s)
- Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Oleg O Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Andrey Dvoretskiy
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Mark M Dzyunov
- Department of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation
| | - Uliana V Fedorova
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
27
|
Patel M, Desai B, Sheth A, Dholakiya BZ, Naveen T. Recent Advances in Mono‐ and Difunctionalization of Unactivated Olefins. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Monak Patel
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bhargav Desai
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Aakash Sheth
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| | - Togati Naveen
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology Gujarat–Surat 395 007 India
| |
Collapse
|
28
|
Gurawa A, Kumar M, Kashyap S. Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ 3-azidoiodane Species. ACS OMEGA 2021; 6:26623-26639. [PMID: 34661016 PMCID: PMC8515593 DOI: 10.1021/acsomega.1c03991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The photolytic radical-induced vicinal azidooxygenation of synthetically important and diverse functionalized substrates including unactivated alkenes is reported. The photoredox-catalyst/additive-free protocol enables intermolecular oxyazidation by simultaneously incorporating two new functionalities; C-O and C-N across the C=C double bond in a selective manner. Mechanistic investigations reveal the intermediacy of the azidyl radical facilitated via the photolysis of λ3-azidoiodane species and cascade proceeding to generate an active carbon-centered radical. The late-stage transformations of azido- and oxy-moieties were amply highlighted by assembling high-value drug analogs and bioactive skeletons.
Collapse
|
29
|
Giofrè S, Molteni L, Nava D, Lo Presti L, Beccalli EM. Enantio‐ and Regioselective Palladium(II)‐Catalyzed Dioxygenation of (Aza‐)Alkenols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Donatella Nava
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Egle Maria Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| |
Collapse
|
30
|
Giofrè S, Molteni L, Nava D, Lo Presti L, Beccalli EM. Enantio- and Regioselective Palladium(II)-Catalyzed Dioxygenation of (Aza-)Alkenols. Angew Chem Int Ed Engl 2021; 60:21723-21727. [PMID: 34387928 PMCID: PMC8518864 DOI: 10.1002/anie.202109312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/23/2022]
Abstract
An oxidative Pd-catalyzed intra-intermolecular dioxygenation of (aza-)alkenols has been reported, with total regioselectivity. To study the stereoselectivity, different chiral ligands as well as different hypervalent-iodine compounds have been compared. In particular, by using a C-6 modified pyridinyl-oxazoline (Pyox) ligand and hypervalent iodine bearing an aromatic ring, an excellent enantio- and diastereoselectivity has been achieved.
Collapse
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| | - Donatella Nava
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133MilanoItaly
| | - Egle Maria Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| |
Collapse
|
31
|
Bhoyare VW, Tathe AG, Das A, Chintawar CC, Patil NT. The interplay of carbophilic activation and Au(I)/Au(III) catalysis: an emerging technique for 1,2-difunctionalization of C-C multiple bonds. Chem Soc Rev 2021; 50:10422-10450. [PMID: 34323240 DOI: 10.1039/d0cs00700e] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold complexes have emerged as the catalysts of choice for various functionalization reactions of C-C multiple bonds due to their inherent carbophilic nature. In a parallel space, efforts to realize less accessible cross-coupling reactivity have led to the development of various strategies that facilitate the arduous Au(i)/Au(iii) redox cycle. The interplay of the two important reactivity modes encountered in gold catalysis, namely carbophilic activation and Au(i)/Au(iii) catalysis, has allowed the development of a novel mechanistic paradigm that sponsors 1,2-difunctionalization reactions of various C-C multiple bonds. Interestingly, the reactivity as well as selectivity obtained through this interplay could be complementary to that obtained by the use of various other transition metals that mainly involved the classical oxidative addition/migratory insertion pathways. The present review shall comprehensively cover all the 1,2-difunctionalization reactions of C-C multiple bonds that have been realized by the interplay of the two important reactivity modes and categorized on the basis of the method that has been employed to foster the Au(i)/Au(iii) redox cycle.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Akash G Tathe
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Avishek Das
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Chetan C Chintawar
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| | - Nitin T Patil
- India Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal Bypass Road, Bhauri, Bhopal - 462 066, India.
| |
Collapse
|
32
|
Dasgupta A, Thiehoff C, Newman PD, Wirth T, Melen RL. Reactions promoted by hypervalent iodine reagents and boron Lewis acids. Org Biomol Chem 2021; 19:4852-4865. [PMID: 34019066 DOI: 10.1039/d1ob00740h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Understanding the role of boranes in hypervalent iodine chemistry will open up new reactivities which can be utilised in organic synthesis. Due to similar reactivities, λ3-iodanes have presented themselves as viable alternatives for many transformations dominated by transition metals whilst mitigating some of the associated drawbacks of metal systems. As showcased by recent reports, boranes can adopt a dual role in hypervalent iodine chemistry that surpasses mere activation of the hypervalent iodine reagent. Increased efforts to harness this potential with diverse boranes will uncover exciting reactivity with high applicability across various disciplines including adoption in the pharmaceutical sciences. This review will be relevant to the wider synthetic community including organic, inorganic, materials, and medicinal chemists due to the versatility of hypervalent iodine chemistry especially in combination with borane activation or participation. We aim to highlight the development of hypervalent iodine compounds including their structure, bonding, synthesis and utility in metal-free organic synthesis in combination with Lewis acidic boranes.
Collapse
Affiliation(s)
- Ayan Dasgupta
- Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Christian Thiehoff
- Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Paul D Newman
- Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Thomas Wirth
- Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| | - Rebecca L Melen
- Cardiff University, School of Chemistry, Park Place, Main Building, Cardiff CF10 3AT, Cymru/Wales, UK.
| |
Collapse
|
33
|
Kulthe AD, Mainkar PS, Akondi SM. Intermolecular trifluoromethyl-alkenylation of alkenes enabled by metal-free photoredox catalysis. Chem Commun (Camb) 2021; 57:5582-5585. [PMID: 33969856 DOI: 10.1039/d1cc01806j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component and redox-neutral trifluoromethylative alkenylation of unactivated alkenes with β-nitrostyrenes has been developed under visible-light. This metal-free protocol utilizes the easy to handle Langlois reagent (CF3SO2Na) as the CF3 source and is suitable for various unactivated alkenes and β-nitrostyrenes, affording a series of trifluoromethylated aromatic alkenes under mild conditions in good to excellent yields.
Collapse
Affiliation(s)
- Arun D Kulthe
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
34
|
Wirth T, Elsherbini M, Osi A, Alharbi H, Karam F. Sulfur-Based Chiral Iodoarenes: An Underexplored Class of Chiral Hypervalent Iodine Reagents. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1508-9593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractChiral hypervalent iodine reagents are active players in modern stereoselective organic synthesis. Structurally diverse chiral hypervalent iodine reagents have been synthesised and extensively studied, but hypervalent iodine reagents containing chiral sulfur stereogenic centre are scarce and their synthesis is challenging. A small library of iodoarenes containing chiral sulfinamide and chiral sulfoximine moieties has been synthesised using commercially available reagents. The oxidation of the chiral iodoarene precursors to iodine(III) reagents was cumbersome due to facile overoxidation of the sulfoxide moiety and hence loss of chirality under various oxidation conditions. Oxidation of chiral sulfonimidoyl derivatives to the corresponding hypervalent iodine reagents was successful and led to novel sulfur-based chiral iodine(III) reagents.
Collapse
Affiliation(s)
| | - Mohamed Elsherbini
- School of Chemistry, Cardiff University
- New address: Department of Chemistry, University of Huddersfield
| | | | | | | |
Collapse
|
35
|
Li J, Yuan Y, Bao X, Sang T, Yang J, Huo C. Visible-Light-Induced Intermolecular Oxyimination of Alkenes. Org Lett 2021; 23:3712-3717. [PMID: 33843240 DOI: 10.1021/acs.orglett.1c01064] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intermolecular vicinal O-N difunctionalization reaction of olefins with oxime esters through energy transfer catalysis has been developed.
Collapse
Affiliation(s)
- Jun Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tongzhi Sang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Jie Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials; Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
36
|
Alharbi H, Elsherbini M, Qurban J, Wirth T. C-N Axial Chiral Hypervalent Iodine Reagents: Catalytic Stereoselective α-Oxytosylation of Ketones. Chemistry 2021; 27:4317-4321. [PMID: 33428245 PMCID: PMC7986903 DOI: 10.1002/chem.202005253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Indexed: 12/22/2022]
Abstract
A simple synthesis of a library of novel C−N axially chiral iodoarenes is achieved in a three‐step synthesis from commercially available aniline derivatives. C−N axial chiral iodine reagents are rarely investigated in the hypervalent iodine arena. The potential of the novel chiral iodoarenes as organocatalysts for stereoselective oxidative transformations is assessed using the well explored, but challenging stereoselective α‐oxytosylation of ketones. All investigated reagents catalyse the stereoselective oxidation of propiophenone to the corresponding chiral α‐oxytosylated products with good stereochemical control. Using the optimised reaction conditions a wide range of products was obtained in generally good to excellent yields and with good enantioselectivities.
Collapse
Affiliation(s)
- Haifa Alharbi
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Mohamed Elsherbini
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,current address: Department of Chemistry, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Jihan Qurban
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.,current address: Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| |
Collapse
|
37
|
Achard T, Bellemin‐Laponnaz S. Recent Advances on Catalytic Osmium‐Free Olefin
syn
‐Dihydroxylation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thierry Achard
- Département des Matériaux Organiques Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) Université de Strasbourg CNRS UMR‐7504 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| | - Stéphane Bellemin‐Laponnaz
- Département des Matériaux Organiques Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) Université de Strasbourg CNRS UMR‐7504 23 rue du Loess, BP 43 67034 Strasbourg Cedex 2 France
| |
Collapse
|
38
|
Das M, Rodríguez A, Lo PKT, Moran WJ. Synthesis of Oxazolidinones by a Hypervalent Iodine Mediated Cyclization of
N
‐Allylcarbamates. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mirdyul Das
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| | - Arantxa Rodríguez
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| | - Pui Kin Tony Lo
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| | - Wesley J. Moran
- Department of Chemistry University of Huddersfield Queensgate Huddersfield HD1 3DH U.K
| |
Collapse
|
39
|
Lipshultz JM, Li G, Radosevich AT. Main Group Redox Catalysis of Organopnictogens: Vertical Periodic Trends and Emerging Opportunities in Group 15. J Am Chem Soc 2021; 143:1699-1721. [PMID: 33464903 PMCID: PMC7934640 DOI: 10.1021/jacs.0c12816] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A growing number of organopnictogen redox catalytic methods have emerged-especially within the past 10 years-that leverage the plentiful reversible two-electron redox chemistry within Group 15. The goal of this Perspective is to provide readers the context to understand the dramatic developments in organopnictogen catalysis over the past decade with an eye toward future development. An exposition of the fundamental differences in the atomic structure and bonding of the pnictogens, and thus the molecular electronic structure of organopnictogen compounds, is presented to establish the backdrop against which organopnictogen redox reactivity-and ultimately catalysis-is framed. A deep appreciation of these underlying periodic principles informs an understanding of the differing modes of organopnictogen redox catalysis and evokes the key challenges to the field moving forward. We close by addressing forward-looking directions likely to animate this area in the years to come. What new catalytic manifolds can be developed through creative catalyst and reaction design that take advantage of the intrinsic redox reactivity of the pnictogens to drive new discoveries in catalysis?
Collapse
Affiliation(s)
- Jeffrey M Lipshultz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gen Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander T Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Deng XJ, Liu HX, Zhang LW, Zhang GY, Yu ZX, He W. Iodoarene-Catalyzed Oxyamination of Unactivated Alkenes to Synthesize 5-Imino-2-Tetrahydrofuranyl Methanamine Derivatives. J Org Chem 2020; 86:235-253. [PMID: 33336571 DOI: 10.1021/acs.joc.0c02047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reported here is the room-temperature metal-free iodoarene-catalyzed oxyamination of unactivated alkenes. In this process, the alkenes are difunctionalized by the oxygen atom of the amide group and the nitrogen in an exogenous HNTs2 molecule. This mild and open-air reaction provided an efficient synthesis to N-bistosyl-substituted 5-imino-2-tetrahydrofuranyl methanamine derivatives, which are important motifs in drug development and biological studies. Mechanistic study based on experiments and density functional theory calculations showed that this transformation proceeds via activation of the substrate alkene by an in situ generated cationic iodonium(III) intermediate, which is subsequently attacked by an oxygen atom (instead of nitrogen) of amides to form a five-membered ring intermediate. Finally, this intermediate undergoes an SN2 reaction by NTs2 as the nucleophile to give the oxygen and nitrogen difunctionalized 5-imino-2-tetrahydrofuranyl methanamine product. An asymmetric variant of the present alkene oxyamination using chiral iodoarenes as catalysts also gave promising results for some of the substrates.
Collapse
Affiliation(s)
- Xiao-Jun Deng
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Lu-Wen Zhang
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guan-Yu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
41
|
Yi X, Hu X. Intermolecular oxidative amination of unactivated alkenes by dual photoredox and copper catalysis. Chem Sci 2020; 12:1901-1906. [PMID: 34163953 PMCID: PMC8179295 DOI: 10.1039/d0sc05952h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oxidative amination of alkenes via amidyl radical addition is potentially an efficient method to generate allylic amines, which are versatile synthetic intermediates to bioactive compounds and organic materials. Here by combining photochemical generation of amidyl radicals with Cu-mediated β-H elimination of alkyl radicals, we have developed an intermolecular oxidative amination of unactivated alkenes. The reaction relies on tandem photoredox and copper catalysis, and works for both terminal and internal alkenes. The radical nature of the reaction and the mild conditions lead to high functional group tolerance. Oxidative amination via amidyl radical addition of unactivated alkenes was realized by dual photoredox and copper catalysis.![]()
Collapse
Affiliation(s)
- Xiangli Yi
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| |
Collapse
|
42
|
Zhang B, Li X, Guo B, Du Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem Commun (Camb) 2020; 56:14119-14136. [PMID: 33140751 DOI: 10.1039/d0cc05354f] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervalent iodine reagents have been extensively employed in various types of oxidative organic reactions including oxidative coupling/cyclization, bifunctionalization of olefins and cyclopropane, C-H functionalization, and oxidative rearrangement reactions. In this review, the developments of the exclusive hypervalent iodine-mediated reactions involving oxidative rearrangement processes, including [1,2]-migration, Hofmann rearrangement, Beckmann rearrangement, ring contraction, ring expansion, [3,3]-sigmatropic/iodonium-Claisen rearrangement and some miscellaneous rearrangements, have been summarized.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | |
Collapse
|
43
|
Shetgaonkar SE, Singh FV. Hypervalent Iodine Reagents in Palladium-Catalyzed Oxidative Cross-Coupling Reactions. Front Chem 2020; 8:705. [PMID: 33134246 PMCID: PMC7553084 DOI: 10.3389/fchem.2020.00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 01/12/2023] Open
Abstract
Hypervalent iodine compounds are valuable and versatile reagents in synthetic organic chemistry, generating a diverse array of useful organic molecules. Owing to their non-toxic and environmentally friendly features, these reagents find potential applications in various oxidative functionalization reactions. In recent years, the use of hypervalent iodine reagents in palladium-catalyzed transformations has been widely studied as they are strong electrophiles and powerful oxidizing agents. For instance, extensive work has been carried out in the field of C–H bond functionalization via Pd-catalysis using hypervalent iodine reagents as oxidants. In addition, nowadays, iodine(III) reagents have been frequently employed as arylating agents in Pd-catalyzed C–H arylation or Heck-type cross-coupling reactions. In this review, recent advancements in the area of palladium-catalyzed oxidative cross-coupling reactions using hypervalent iodine reagents are summarized in detail.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| | - Fateh V Singh
- Chemistry Division, School of Advanced Science, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
44
|
Photo-mediated selective deconstructive geminal dihalogenation of trisubstituted alkenes. Nat Commun 2020; 11:4462. [PMID: 32901002 PMCID: PMC7479597 DOI: 10.1038/s41467-020-18274-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Selective deconstructive functionalization of alkenes, other than the well-established olefin metathesis and ozonolysis, to produce densely functionalized molecular scaffolds is highly attractive but challenging. Here we report an efficient photo-mediated deconstructive germinal dihalogenation of carbon-carbon double bonds. A wide range of geminal diiodoalkanes and bromo(iodo)alkanes (>40 examples) are directly prepared from various trisubstituted alkenes, including both cyclic and acyclic olefins. This C=C cleavage is highly chemoselective and produces geminal dihalide ketones in good yields. Mechanistic investigations suggest a formation of alkyl hypoiodites from benzyl alcohols and N-iodoimides, which undergo light-induced homolytic cleavage to generate active oxygen radical species. Efficient synthetic pathways to geminal dihalides are quite limited, despite their versatility as chemical building blocks. Here, the authors report a photo-mediated deconstructive fragmentation of cyclic and acyclic trisubstituted alkenes to access a variety of geminal dihalides.
Collapse
|
45
|
Han Z, Zhang C. Fluorination and Fluoroalkylation Reactions Mediated by Hypervalent Iodine Reagents. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000750] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhou‐Zhou Han
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Cheng‐Pan Zhang
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
46
|
Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Enantioselective Synthesis of 3-Fluorochromanes via Iodine(I)/Iodine(III) Catalysis. Angew Chem Int Ed Engl 2020; 59:15069-15075. [PMID: 32347605 PMCID: PMC7496101 DOI: 10.1002/anie.202005181] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 12/24/2022]
Abstract
The chromane nucleus is common to a plenum of bioactive small molecules where it is frequently oxidized at position 3. Motivated by the importance of this position in conferring efficacy, and the prominence of bioisosterism in drug discovery, an iodine(I)/iodine(III) catalysis strategy to access enantioenriched 3-fluorochromanes is disclosed (up to 7:93 e.r.). In situ generation of ArIF2 enables the direct fluorocyclization of allyl phenyl ethers to generate novel scaffolds that manifest the stereoelectronic gauche effect. Mechanistic interrogation using deuterated probes confirms a stereospecific process consistent with a type IIinv pathway.
Collapse
Affiliation(s)
- Jérôme C. Sarie
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Christian Thiehoff
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Jessica Neufeld
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| | - Ryan Gilmour
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 4048149MünsterGermany
| |
Collapse
|
47
|
Neufeld J, Daniliuc CG, Gilmour R. Fluorohydration of alkynes via I(I)/I(III) catalysis. Beilstein J Org Chem 2020; 16:1627-1635. [PMID: 32704329 PMCID: PMC7356369 DOI: 10.3762/bjoc.16.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/30/2020] [Indexed: 11/23/2022] Open
Abstract
Substrate specificity is ubiquitous in biological catalysis, but less pervasive in the realm of small-molecule catalysis. Herein, we disclose an intriguing example of substrate specificity that was observed whilst exploring catalysis-based routes to generate α-fluoroketones from terminal and internal alkynes under the auspices of I(I)/I(III) catalysis. Utilising p-TolI as an inexpensive organocatalyst with Selectfluor® and amine/HF mixtures, the formation of protected α-fluoroketones from simple alkynes was realised. Whilst the transient p-TolIF2 species generated in situ productively engaged with pentynyl benzoate scaffolds to generate the desired α-fluoroketone motif, augmentation or contraction of the linker suppressed catalysis. The prerequisite for this substructure was established by molecular editing and was complemented with a physical organic investigation of possible determinants.
Collapse
Affiliation(s)
- Jessica Neufeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
48
|
Zhao GH, Li BQ, Wang SS, Liu M, Chen Y, Wang B. PIFA-Mediated Dearomatizative Spirocyclization of Phenolic Biarylic Ketones via Oxidation and C-C Bond Cleavage. J Org Chem 2020; 85:9367-9374. [PMID: 32578986 DOI: 10.1021/acs.joc.0c00971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dearomatizing spirocyclization of phenolic biarylic ketones using PhI(OCOCF3)2 as oxidant is presented. The reaction affords various cyclohexadienones through C-C bond cleavage under mild conditions. Mechanistic investigations reveal that an exocyclic enol ether acts as the key intermediate in the transformation.
Collapse
Affiliation(s)
- Gui-Hua Zhao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| | - Bi-Qing Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| | - Shuang-Shuang Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| | - Man Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| | - Yuan Chen
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| | - Bin Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P.R. China
| |
Collapse
|
49
|
Abazid AH, Clamor N, Nachtsheim BJ. An Enantioconvergent Benzylic Hydroxylation Using a Chiral Aryl Iodide in a Dual Activation Mode. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ayham H. Abazid
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Nils Clamor
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Boris J. Nachtsheim
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
50
|
Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Enantioselektive Synthese von 3‐Fluorchromanen durch Iod(I)/Iod(III)‐Katalyse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jérôme C. Sarie
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Christian Thiehoff
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Jessica Neufeld
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Ryan Gilmour
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|