1
|
Li YX, Chi J, Zhang LX, Wang F, Zhang WJ, Wang ZM, Dai LP. ent-Kaurane diterpenoids from Isodon henryi and their anti-inflammatory activities. PHYTOCHEMISTRY 2024; 228:114247. [PMID: 39159739 DOI: 10.1016/j.phytochem.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Phytochemical investigation of the 70% ethanol extract of Isodon henryi Kudô afforded fifteen ent-kaurane diterpenoids, including nine previously undescribed compounds, named isohenolides C-K (1-9). Compounds 1-6 featured an unusual 6,7;8,15-diseco-7,20-olide ent-kaurane diterpenoid scaffold, in which 1 also possessed an 11,15-lactone ring while 2-6 all contained a free α-methylene-γ-carboxylic acid. Compound 6 was also a rare 6,8-cyclo-7,20-olide ent-kauranoid. Their structures were elucidated primarily by HRESIMS, 1D and 2D NMR spectroscopy, electronic circular dichroism and X-ray diffraction (Cu Kα) methods. Additionally, most compounds were also screened for anti-inflammatory actions against lipopolysaccharide-induced RAW 264.7 cells, and compounds 9 and 13 exhibited stronger nitric oxide inhibition, with IC50 values of 15.99 ± 0.75 and 18.19 ± 0.42 μM, respectively.
Collapse
Affiliation(s)
- Yi-Xiao Li
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, 450046, China
| | - Jun Chi
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, 450046, China
| | - Ling-Xia Zhang
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, 450046, China
| | - Fang Wang
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, 450046, China
| | - Wei-Jin Zhang
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, 450046, China
| | - Zhi-Min Wang
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li-Ping Dai
- Henan University of Chinese Medicine, Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Padilla-Mayne S, Ovalle-Magallanes B, Figueroa M, Linares E, Bye R, Rivero-Cruz I, González-Andrade M, Aguayo-Ortiz R, Mata R. Chemical Analysis and Antidiabetic Potential of a Decoction from Stevia serrata Roots. JOURNAL OF NATURAL PRODUCTS 2024; 87:501-513. [PMID: 37738100 DOI: 10.1021/acs.jnatprod.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
A decoction of the roots (31.6-316 mg/kg) from Stevia serrata Cav. (Asteraceae) as well as the main component (5-150 mg/kg) showed hypoglycemic and antihyperglycemic effects in mice. The fractionation of the active extract led to the isolation of dammaradiene acetate (1), stevisalioside A (2), and three new chemical entities characterized by spectroscopic methods and named stevisaliosides B-D (3-5). Glycoside 2 (5 and 50 mg/kg) decreased blood glucose levels and the postprandial peak during oral glucose and insulin tolerance tests in STZ-hyperglycemic mice. Compounds 1-5 were tested also against PTP1B1-400 and showed IC50 values of 1180.9 ± 0.33, 526.8 ± 0.02, 532.1 ± 0.03, 928.2 ± 0.39, and 31.8 ± 1.09 μM, respectively. Compound 5 showed an IC50 value comparable to that of ursolic acid (IC50 = 30.7 ± 0.00 μM). Docking studies revealed that 2-5 and their aglycones bind to PTP1B1-400 in a pocket formed by the C-terminal region. The volatilome of S. serrata was characterized by a high content of (E)-longipinene, spathulenol, guaiadiene, seychellene, and aromandendrene. Finally, a UHPLC-UV method was developed and validated to quantify the content of 2 in the decoction of the plant.
Collapse
Affiliation(s)
- Sofía Padilla-Mayne
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | | | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Edelmira Linares
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Robert Bye
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Isabel Rivero-Cruz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Martín González-Andrade
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Rachel Mata
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| |
Collapse
|
3
|
Lingxia Z, Hong W, Man G, Xinzhou W, Lili W, Zhimin W, Liping D, Erping X. Rabdosichuanin C inhibits productions of pro-inflammatory mediators regulated by NF-κB signaling in LPS-stimulated RAW264.7 cells. J Cell Biochem 2023; 124:1667-1684. [PMID: 37850620 DOI: 10.1002/jcb.30474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/14/2023] [Accepted: 08/26/2023] [Indexed: 10/19/2023]
Abstract
Chronic pharyngitis (CP) is an inflammatory disease of the pharyngeal mucosa and its lymphatic tissues that is difficult to treat clinically. However, research on the exact therapeutic agents and molecular mechanisms of CP is still unclear. In this study, we investigated Rabdosichuanin C (RC) to attenuate lipopolysaccharide (LPS)-induced inflammatory damage in RAW264.7 cells by a combination of targeted virtual screening and in vitro activity assay and further clarified its molecular mechanism of action centering on the IκB/nuclear factor kappa B (NF-κB) pathway. Molecular docking and pharmacophore simulation methods were used to screen compounds with IκB inhibitory effects. Expression of genes and proteins related to the IκB/NF-κB signaling pathway by RC in LPS-induced inflammatory injury model of RAW264.7 cells was detected by PCR, enzyme-linked immunosorbent assay, and Western blot. The docking of RC with IκB protein showed good binding energy, and pharmacophore simulations further confirmed the active effect of RC in inhibiting IκB protein. RC intervention in LPS-induced RAW264.7 cells significantly reduced the expression levels of inflammatory factors tumor necrosis factor-α, interleukins-6, iNOS, and CD-86 at the messenger RNA and protein levels, downregulated IκB, p65 protein phosphorylation levels, and significantly inhibited IκB/NF-κB signaling pathway activation. Virtual screening provided us with an effective method to rapidly identify compounds RC that target inhibit the action of IκB, and the activity results showed that RC inhibits NF-κB signaling pathway activation. It is suggested that RC may play a role in the treatment of CP by inhibiting the IκB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhang Lingxia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wu Hong
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gong Man
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wang Xinzhou
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wang Lili
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Wang Zhimin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dai Liping
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xu Erping
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, China
- Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Cheng E, Chi J, Li YX, Zhang WJ, Huang N, Wang ZM, Dai LP, Xu EP. Diverse ent-kaurane diterpenoids from Isodon henryi. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Xing H, An L, Song Z, Li S, Wang H, Wang C, Zhang J, Tuerhong M, Abudukeremu M, Li D, Lee D, Xu J, Lall N, Guo Y. Anti-Inflammatory ent-Kaurane Diterpenoids from Isodon serra. JOURNAL OF NATURAL PRODUCTS 2020; 83:2844-2853. [PMID: 32993289 DOI: 10.1021/acs.jnatprod.9b01281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ten new ent-kaurane diterpenoids, including two pairs of epimers 1/2 and 4/5 and a 6,7-seco-ent-kauranoid 10, were obtained from the aerial parts of Isodon serra. The structures of the new compounds were confirmed by extensive spectroscopic methods and electronic circular dichroism (ECD) data analysis. An anti-inflammatory assay was applied to evaluate their nitric oxide (NO) inhibitory activities by using LPS-stimulated BV-2 cells. Compounds 1 and 9 exhibited notable NO production inhibition with IC50 values of 15.6 and 7.3 μM, respectively. Moreover, the interactions of some bioactive diterpenoids with inducible nitric oxide synthase (iNOS) were explored by employing molecular docking studies.
Collapse
Affiliation(s)
- Honghong Xing
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ziteng Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Chunyan Wang
- Tianjin Second People's Hospital, Tianjin 300192, People's Republic of China
| | - Jie Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Muhetaer Tuerhong
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Munira Abudukeremu
- College of Chemistry and Environmental Sciences, Kashgar University, Kashgar 844000, People's Republic of China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Nankai Hospital Affiliated to Nankai University, Tianjin 300100, People's Republic of China
| | - Dongho Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
6
|
Sitarek P, Merecz-Sadowska A, Śliwiński T, Zajdel R, Kowalczyk T. An In Vitro Evaluation of the Molecular Mechanisms of Action of Medical Plants from the Lamiaceae Family as Effective Sources of Active Compounds against Human Cancer Cell Lines. Cancers (Basel) 2020; 12:E2957. [PMID: 33066157 PMCID: PMC7601952 DOI: 10.3390/cancers12102957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022] Open
Abstract
It is predicted that 1.8 million new cancer cases will be diagnosed worldwide in 2020; of these, the incidence of lung, colon, breast, and prostate cancers will be 22%, 9%, 7%, and 5%, respectively according to the National Cancer Institute. As the global medical cost of cancer in 2020 will exceed about $150 billion, new approaches and novel alternative chemoprevention molecules are needed. Research indicates that the plants of the Lamiaceae family may offer such potential. The present study reviews selected species from the Lamiaceae and their active compounds that may have the potential to inhibit the growth of lung, breast, prostate, and colon cancer cells; it examines the effects of whole extracts, individual compounds, and essential oils, and it discusses their underlying molecular mechanisms of action. The studied members of the Lamiaceae are sources of crucial phytochemicals that may be important modulators of cancer-related molecular targets and can be used as effective factors to support anti-tumor treatment.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Radosław Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (A.M.-S.); (R.Z.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
7
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
8
|
Jiang X, Zhang LX, Feng QM, Wu H, Liu YL, Wang DQ, Dai LP, Wang ZM. A new ent-kaurane diterpene from Isodon henryi. Nat Prod Res 2019; 35:2346-2352. [PMID: 31607167 DOI: 10.1080/14786419.2019.1675067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One new ent-Kaurane diterpenoid (1) was isolated from the ethyl acetate fraction of Isodon henryi. Along with ten diterpenoids (2-11) were isolated from this plant for the first time, including six 7,20-epoxy diterpenoids, three enmenol-type diterpenoids and one 6,7-seco-ent-kaurene diterpenoid. Their structures were elucidated by 1 D and 2 D NMR, confirmed by HRESIMS and electronic circular dichroism analyses. Furthermore, the cytotoxicities of twelve compounds were investigated in five human cancer cell lines, including A2780, BGC-823, HCT-116, HepG2 and HeLa. And the IC50 values of these diterpenoids ranged from 2.1 to 88.8 μM in the tested cell lines. Based on the molecular structures of 12 compounds and the bioassay results, it suggests that α,β-unsaturated pentanone is the cytotoxic active site of 7,20 epoxy ent-kaurane diterpenoid, but it does not contribute much to enmenol-type diterpenoid.Supplemental data for this article can be accessed at https://doi.org/10.1080/14786419.2019.1675067.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Henan University of Traditional Chinese Medicine , Zhengzhou , China
| | - Ling-Xia Zhang
- School of Pharmacy, Henan University of Traditional Chinese Medicine , Zhengzhou , China.,Research Center for Classic Chinese Medines & Health Herbal Products , Zhengzhou , China
| | - Qing-Mei Feng
- School of Pharmacy, Henan University of Traditional Chinese Medicine , Zhengzhou , China.,Research Center for Classic Chinese Medines & Health Herbal Products , Zhengzhou , China
| | - Hong Wu
- School of Pharmacy, Henan University of Traditional Chinese Medicine , Zhengzhou , China
| | - Ya-Lin Liu
- School of Pharmacy, Henan University of Traditional Chinese Medicine , Zhengzhou , China.,Research Center for Classic Chinese Medines & Health Herbal Products , Zhengzhou , China
| | - De-Qin Wang
- Guangzhou Hehuang Pharmaceutical Co., Ltd , Guangzhou , China
| | - Li-Ping Dai
- School of Pharmacy, Henan University of Traditional Chinese Medicine , Zhengzhou , China.,Research Center for Classic Chinese Medines & Health Herbal Products , Zhengzhou , China
| | - Zhi-Min Wang
- Research Center for Classic Chinese Medines & Health Herbal Products , Zhengzhou , China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| |
Collapse
|