1
|
Scoffone VC, Irudal S, AbuAlshaar A, Piazza A, Trespidi G, Barbieri G, Makarov V, Migliavacca R, De Rossi E, Buroni S. Bactericidal and Anti-Biofilm Activity of the FtsZ Inhibitor C109 against Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:1571. [PMID: 36358226 PMCID: PMC9687021 DOI: 10.3390/antibiotics11111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 09/29/2023] Open
Abstract
In the last few years, Acinetobacter baumannii has ranked as a number one priority due to its Multi Drug Resistant phenotype. The different metabolic states, such as the one adopted when growing as biofilm, help the bacterium to resist a wide variety of compounds, placing the discovery of new molecules able to counteract this pathogen as a topic of utmost importance. In this context, bacterial cell division machinery and the conserved protein FtsZ are considered very interesting cellular targets. The benzothiadiazole compound C109 is able to inhibit bacterial growth and to block FtsZ GTPase and polymerization activities in Burkholderia cenocepacia, Pseudomonas aeruginosa, and Staphylococcus aureus. In this work, the activity of C109 was tested against a panel of antibiotic sensitive and resistant A. baumannii strains. Its ability to inhibit biofilm formation was explored, together with its activity against the A. baumannii FtsZ purified protein. Our results indicated that C109 has good MIC values against A. baumannii clinical isolates. Moreover, its antibiofilm activity makes it an interesting alternative treatment, effective against diverse metabolic states. Finally, its activity was confirmed against A. baumannii FtsZ.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Aseel AbuAlshaar
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Edda De Rossi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
2
|
Antimicrobial Peptides as an Alternative for the Eradication of Bacterial Biofilms of Multi-Drug Resistant Bacteria. Pharmaceutics 2022; 14:pharmaceutics14030642. [PMID: 35336016 PMCID: PMC8950055 DOI: 10.3390/pharmaceutics14030642] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance is an emergency public health problem worldwide, compounded by the ability of bacteria to form biofilms, mainly in seriously ill hospitalized patients. The World Health Organization has published a list of priority bacteria that should be studied and, in turn, has encouraged the development of new drugs. Herein, we explain the importance of studying new molecules such as antimicrobial peptides (AMPs) with potential against multi-drug resistant (MDR) and extensively drug-resistant (XDR) bacteria and focus on the inhibition of biofilm formation. This review describes the main causes of antimicrobial resistance and biofilm formation, as well as the main and potential AMP applications against these bacteria. Our results suggest that the new biomacromolecules to be discovered and studied should focus on this group of dangerous and highly infectious bacteria. Alternative molecules such as AMPs could contribute to eradicating biofilm proliferation by MDR/XDR bacteria; this is a challenging undertaking with promising prospects.
Collapse
|
3
|
In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines 2022; 10:biomedicines10020386. [PMID: 35203595 PMCID: PMC8962335 DOI: 10.3390/biomedicines10020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Antimicrobial peptides (AMPs) are alternative therapeutics to traditional antibiotics against bacterial resistance. Our previous work identified an antimicrobial region at the N-terminus of the eosinophil cationic protein (ECP). Following structure-based analysis, a 30mer peptide (ECPep-L) was designed that combines antimicrobial action against Gram-negative species with lipopolysaccharides (LPS) binding and endotoxin-neutralization activities. Next, analogues that contain non-natural amino acids were designed to increase serum stability. Here, two analogues were selected for in vivo assays: the all-D version (ECPep-D) and the Arg to Orn version that incorporates a D-amino acid at position 2 (ECPep-2D-Orn). The peptide analogues retained high LPS-binding and anti-endotoxin activities. The peptides efficacy was tested in a murine acute infection model of Acinetobacter baumannii. Results highlighted a survival rate above 70% following a 3-day supervision with a single administration of ECPep-D. Moreover, in both ECPep-D and ECPep-2D-Orn peptide-treated groups, clinical symptoms improved significantly and the tissue infection was reduced to equivalent levels to mice treated with colistin, used as a last resort in the clinics. Moreover, treatment drastically reduced serum levels of TNF-α inflammation marker within the first 8 h. The present results support ECP-derived peptides as alternative candidates for the treatment of acute infections caused by Gram-negative bacteria.
Collapse
|
4
|
Guo T, Li M, Sun X, Wang Y, Yang L, Jiao H, Li G. Synergistic Activity of Capsaicin and Colistin Against Colistin-Resistant Acinetobacter baumannii: In Vitro/Vivo Efficacy and Mode of Action. Front Pharmacol 2021; 12:744494. [PMID: 34603057 PMCID: PMC8484878 DOI: 10.3389/fphar.2021.744494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen predominantly associated with nosocomial infections. With emerging resistance against polymyxins, synergistic combinations of drugs are being investigated as a new therapeutic approach. Capsaicin is a common constituent of the human diet and is widely used in traditional alternative medicines. The present study evaluated the antibacterial activities of capsaicin in combination with colistin against three unrelated colistin-resistant Acinetobacter baumannii strains in vitro and in vivo, and then further studied their synergistic mechanisms. Using the checkerboard technique and time-kill assays, capsaicin and colistin showed a synergistic effect on colistin-resistant A. baumannii. A mouse bacteremia model confirmed the in vivo effects of capsaicin and colistin. Mechanistic studies shown that capsaicin can inhibit the biofilm formation of both colistin-resistant and non-resistant A. baumannii. In addition, capsaicin decreased the production of intracellular ATP and disrupted the outer membrane of A. baumannii. In summary, the synergy between these drugs may enable a lower concentration of colistin to be used to treat A. baumannii infection, thereby reducing the dose-dependent side effects. Hence, capsaicin–colistin combination therapy may offer a new treatment option for the control of A. baumannii infection.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Mengying Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Department of Pharmacy, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Xiaoli Sun
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Yuhang Wang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Liying Yang
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hongmei Jiao
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Guocai Li
- Department of Microbiology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| |
Collapse
|
5
|
Roque-Borda CA, da Silva PB, Rodrigues MC, Azevedo RB, Di Filippo L, Duarte JL, Chorilli M, Festozo Vicente E, Pavan FR. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics 2021; 13:773. [PMID: 34064302 PMCID: PMC8224320 DOI: 10.3390/pharmaceutics13060773] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
Bacterial resistance has intensified in recent years due to the uncontrolled use of conventional drugs, and new bacterial strains with multiple resistance have been reported. This problem may be solved by using antimicrobial peptides (AMPs), which fulfill their bactericidal activity without developing much bacterial resistance. The rapid interaction between AMPs and the bacterial cell membrane means that the bacteria cannot easily develop resistance mechanisms. In addition, various drugs for clinical use have lost their effect as a conventional treatment; however, the synergistic effect of AMPs with these drugs would help to reactivate and enhance antimicrobial activity. Their efficiency against multi-resistant and extensively resistant bacteria has positioned them as promising molecules to replace or improve conventional drugs. In this review, we examined the importance of antimicrobial peptides and their successful activity against critical and high-priority bacteria published in the WHO list.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Ricardo Bentes Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (P.B.d.S.); (M.C.R.); (R.B.A.)
| | - Leonardo Di Filippo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.D.F.); (J.L.D.); (M.C.)
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã 17602-496, Brazil;
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil;
| |
Collapse
|
6
|
Yang Y, Huang W, Fan Y, Chen GQ. Gastrointestinal Microenvironment and the Gut-Lung Axis in the Immune Responses of Severe COVID-19. Front Mol Biosci 2021; 8:647508. [PMID: 33912590 PMCID: PMC8071853 DOI: 10.3389/fmolb.2021.647508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an unprecedented threat to the human health. A close association of the digestive tract is implied by the high frequency of gastrointestinal syndromes among COVID-19 patients. A better understanding of the role of intestinal microenvironment in COVID-19 immunopathology will be helpful to improve the control of COVID-19 associated morbidity and mortality. This review summarizes the immune responses associated with the severity of COVID-19, the current evidence of SARS-CoV-2 intestinal tropism, and the potential involvement of gut microenvironment in COVID-19 severity. Additionally, we discuss the therapeutic potential of probiotics as an alternative medicine to prevent or alleviate severe COVID-19 outcome.
Collapse
Affiliation(s)
- Yun Yang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yubo Fan
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,MOE Key Lab of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
7
|
Brakel A, Volke D, Kraus CN, Otvos L, Hoffmann R. Quantitation of a Novel Engineered Anti-infective Host Defense Peptide, ARV-1502: Pharmacokinetic Study of Different Doses in Rats and Dogs. Front Chem 2019; 7:753. [PMID: 31799234 PMCID: PMC6863955 DOI: 10.3389/fchem.2019.00753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/22/2019] [Indexed: 01/24/2023] Open
Abstract
The designer proline-rich antimicrobial peptide (PrAMP) Chex1-Arg20 amide (ARV-1502) is active against Gram-negative and Gram-positive pathogens in different murine infection models when administered parenterally and possesses a wide therapeutic index. Here we studied the pharmacokinetics of ARV-1502 for the first time when administered intramuscularly or intravenously (IV) in Sprague Dawley rats and Beagle dogs. First, a specific and robust quantitation method relying on parallel reaction monitoring (PRM) using a high-resolution hybrid quadrupole-Orbitrap mass spectrometer coupled on-line to reversed-phase uHPLC was established and validated. The limit of detection was 2 ng/mL and the limit of quantitation was 4 ng/mL when spiked to pooled rat and dog plasma. When ARV-1502 was administered IV at doses of 75 and 250 μg/kg in dogs and rats, the plasma concentrations were 0.7 and 3.4 μg/mL 2 min post-administration, respectively. ARV-1502 plasma concentrations declined exponentially reaching levels between 2 and 4 ng/mL after 2 h. Intramuscular administration of 0.75 mg/kg in dogs and 2.5 mg/kg in rats resulted in a different pharmacokinetics profile. The plasma concentrations peaked at 15 min post-injection at 1 μg/mL (dogs) and 12 μg/mL (rats) and decreased exponentially within 3 h to 4 and 16 ng/mL, respectively. The initial plasma concentrations of ARV-1502 and the decay timing afterwards indicated that the peptide circulated in the blood stream for several hours, at some point above the minimal inhibitory concentration against multidrug-resistant Enterobacteriaceae, with blood concentrations sufficient to suppress bacterial growth and to modulate the immune system.
Collapse
Affiliation(s)
- Alexandra Brakel
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Daniela Volke
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | - Laszlo Otvos
- Arrevus, Inc., Raleigh, NC, United States.,Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität Leipzig, Leipzig, Germany.,Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| |
Collapse
|