1
|
Pompa-Pernía A, Molina S, Cherta L, Martínez-García L, Landaburu-Aguirre J. Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling. MEMBRANES 2024; 14:174. [PMID: 39195426 DOI: 10.3390/membranes14080174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024]
Abstract
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different membrane types: microfiltration (MF), commercial ultrafiltration (c-UF), and recycled ultrafiltration (r-UF) membranes. Performance was assessed using synthetic urban wastewater spiked with PS-NPs, focusing on membrane efficiency, fouling behavior, and microbial community shifts. All aMBR systems achieved high organic matter removal, exceeding a 97% COD reduction in both the control and PS-exposed reactors. While low concentrations of PS-NPs did not significantly impact the sludge settleability or soluble microbial products initially, a higher accumulation increased the carbohydrate concentrations, indicating a protective bacterial response. The microbial community composition also adapted over time under polystyrene stress. All membrane types exhibited substantial NP removal; however, the presence of nano-sized PS particles negatively affected the membrane performance, enhancing the fouling phenomena and increasing transmembrane pressure. Despite this, the r-UF membrane demonstrated comparable efficiency to c-UF, suggesting its potential for sustainable applications. Advanced characterization techniques including pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were employed for NP detection and quantification.
Collapse
Affiliation(s)
- Anamary Pompa-Pernía
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
- Chemical Engineering Department, University of Alcalá, Ctra. Madrid-Barcelona Km 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Serena Molina
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | - Laura Cherta
- IMDEA Water Institute, Avenida Punto Com, 2, Alcalá de Henares, 28805 Madrid, Spain
| | | | | |
Collapse
|
2
|
Shamskilani M, Masojídek J, Abbasiniasar M, Ganji A, Shayegane J, Babaei A. Microalgae cultivation trials in a membrane bioreactor operated in heterotrophic, mixotrophic, and phototrophic modes using ammonium-rich wastewater: The study of fouling. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2732-2745. [PMID: 38822611 DOI: 10.2166/wst.2024.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In this work, microalgae cultivation trials were carried out in a membrane bioreactor to investigate fouling when the cultures of Chlorellavulgaris were grown under mixotrophic, heterotrophic, and phototrophic cultivation regimes. The Chlorella cultures were cultivated in wastewater as a source of nutrients that contained a high concentration of ammonium. In mixotrophic cultivation trials, the results showed that the elevated contents of carbohydrates in the soluble microbial product and proteins in extracellular polymeric substances probably initiated membrane fouling. In this case, the highest protein content was also found in extracellular polymeric substances due to the high nitrogen removal rate. Consequently, transmembrane pressure significantly increased compared to the phototrophic and heterotrophic regimes. The data indicated that cake resistance was the main cause of fouling in all cultivations. Higher protein content in the cake layer made the membrane surface more hydrophobic, while carbohydrates had the opposite effect. Compared to a mixotrophic culture, a phototrophic culture had a larger cell size and higher hydrophobicity, leading to less membrane fouling. Based on our previous data, the highest ammonia removal rate was reached in the mixotrophic cultures; nevertheless, membrane fouling appeared to be the fundamental problem.
Collapse
Affiliation(s)
- Mehrdad Shamskilani
- Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre ALGATECH, Institute of Microbiology AV ČR, v.v.i., Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mahdi Abbasiniasar
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Ganji
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-8639, Tehran, Iran
| | - Jalal Shayegane
- Chemical and Petroleum Engineering Department, Sharif University of Technology, P.O. Box 11365-8639, Tehran, Iran
| | - Azadeh Babaei
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran E-mail:
| |
Collapse
|
3
|
Daud SM, Noor ZZ, Mutamim NSA, Baharuddin NH, Aris A. In-depth insight on microbial electrochemical systems coupled with membrane bioreactors for performance enhancement: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91636-91648. [PMID: 37518846 DOI: 10.1007/s11356-023-28975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023]
Abstract
A conventional activated sludge (CAS) system has traditionally been used for secondary treatment in wastewater treatment plants. Due to the high cost of aeration and the problem of sludge treatment, researchers are developing alternatives to the CAS system. A membrane bioreactor (MBR) is a technology with higher solid-liquid separation efficiency. However, the use of MBR is limited due to inevitable membrane fouling and high energy consumption. Membrane fouling requires frequent cleaning, and MBR components must be replaced, which reduces membrane lifetime and operating costs. To overcome the limitations of the MBR system, a microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system has attracted the interest of researchers. The design of the novel bioelectrochemical membrane reactor (BEMR) can effectively couple microbial degradation in the microbial electrochemical system (MES) and generate a microelectric field to reduce and alleviate membrane fouling in the MBR system. In addition, the coupling system combining an MES and an MBR can improve the efficiency of COD and ammonium removal while generating electricity to balance the energy consumption of the system. However, several obstacles must be overcome before the MFC-MBR coupling system can be commercialised. The aim of this study is to provide critical studies of the MBR, MES and MFC-MBR coupling system for wastewater treatment. This paper begins with a critical discussion of the unresolved MBR fouling problem. There are detailed past and current studies of the MES-MBR coupling system with comparison of performances of the system. Finally, the challenges faced in developing the coupling system on a large scale were discussed.
Collapse
Affiliation(s)
- Siti Mariam Daud
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia.
| | - Zainura Zainon Noor
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
- Faculty of School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Noor Sabrina Ahmad Mutamim
- Department of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Leburaya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Nurul Huda Baharuddin
- Centre for Environmental Sustainability and Water Security (IPASA), Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Azmi Aris
- Faculty of School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|
4
|
Biofouling in Membrane Bioreactors: Mechanism, Interactions and Possible Mitigation Using Biosurfactants. Appl Biochem Biotechnol 2023; 195:2114-2133. [PMID: 36385366 DOI: 10.1007/s12010-022-04261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Biofouling roots damage to membrane bioreactors (MBRs), such as physical, functional and organisational changes and even therefore clogging of the membrane pores and successive microbial degradation. Further, it blocks the pores, results into a biomass cake and in due course reduces the membrane flux and leads to an increase in the operational costs. MBR fouling contributed to the rise in transmembrane pressure (TMP) and decrease in permeate flux (in case of constant pressure operation mode). Chemical surfactants adopted for the cleaning of membrane surfaces have certain disadvantages such as toxicity manifestations, damage to the membranes and high CMC concentrations. Biosurfactant surfactants have attained increasing interest due to their low toxicity, biodegradability, stability to extreme environmental conditions such as temperatures, pH and tolerance to salinity. The biosurfactants trapped the foulants via micelle formation, which distresses hydrophobic interactions amongst bacteria and the surface. Rhamnolipids as an anionic biosurfactant pose a significant interfacial potential and have affinity to bind organic matter. The present review discusses the problem of biofouling in MBRs, type and interactions of foulants involved and also highlights the mechanisms of biosurfactant cleaning, effect of different parameters, effect of concentration, TMP, flux recovery, permeability, mitigation practices and challenges.
Collapse
|
5
|
Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Synergistic Effect of Alternating Current-based Electric and Acoustic Fields on Flux Recovery in Crossflow Microfiltration of Synthetic Wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Contreras JA, Valenzuela EI, Quijano G. Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) as a technology platform for greenhouse gas abatement in wastewater treatment plants: State-of-the-art and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115671. [PMID: 35816965 DOI: 10.1016/j.jenvman.2022.115671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Nitrate/nitrite-dependent anaerobic oxidation of methane (N-AOM) is a metabolic process recently discovered and partially characterized in terms of the microorganisms and pathways involved. The N-AOM process can be a powerful tool for mitigating the impacts of greenhouse gas emissions from wastewater treatment plants by coupling the reduction of nitrate or nitrite with the oxidation of residual dissolved methane. Besides specific anaerobic methanotrophs such as bacteria members of the phylum NC10 and archaea belonging to the lineage ANME-2d, recent reports suggested that other methane-oxidizing bacteria in syntrophy with denitrifiers can also perform the N-AOM process, which facilitates the application of this metabolic process for the oxidation of residual methane under realistic scenarios. This work constitutes a state-of-art review that includes the fundamentals of the N-AOM process, new information on process microbiology, bioreactor configurations, and operating conditions for process implementation in WWTP. Potential advantages of the N-AOM process over aerobic methanotrophic biotechnologies are presented, including the potential interrelation of the N-AOM with other nitrogen removal processes within the WWTP, such as the anaerobic ammonium oxidation. This work also addressed the challenges of this biotechnology towards its application at full scale, identifying and discussing critical research niches.
Collapse
Affiliation(s)
- José A Contreras
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Edgardo I Valenzuela
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Guillermo Quijano
- Laboratory for Research on Advanced Processes for Water Treatment, Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| |
Collapse
|
8
|
Zhou L, Lai Y, Zeng R, Zhao B, Jian Y, Ou P, Zhang W, Ng HY, Zhuang WQ. Core carbon fixation pathways associated with cake layer development in an anoxic-oxic biofilm-membrane bioreactor treating textile wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155483. [PMID: 35483462 DOI: 10.1016/j.scitotenv.2022.155483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Microbial carbon fixation pathways have not yet been adequately understood for their role in membrane case layer formation processes. Carbon fixation bacteria can play critical roles in either causing or enhancing cake layer formation in some autotrophic-prone anoxic conditions, such as sulfur-cycling conditions. Understanding the microbes capable of carbon fixation can potentially guide the design of membrane biofouling mitigation strategies in scientific ways. Thus, we used meta-omics methods to query carbon fixation pathways in the cake layers of a full-scale anoxic-oxic biofilm-MBR system treating textile wastewater in this study. Based on the wastewater constituents and other properties, such as anoxic conditions, sulfide-reducing and sulfur-oxidizing bacteria could co-exist in the membrane unit. In addition, low-light radiation conditions could also happen to the membrane unit. However, we could not quantify the light intensity or total energy input accurately because the whole experimental setup was a full-scale system. Potentially complete carbon fixation pathways in the cake layer included the Calvin-Benson-Bassham cycle, Wood-Ljungdahl pathway, and the 3-hydroxypropionate bicycle. We discovered that using aeration could effectively inhibit carbon fixation, which resulted in mitigating membrane cake layer development. However, the aeration resulted in the 3-hydroxypropionate bicycle pathway, presumably used by aerobic sulfur-oxidizing prokaryotes, to become a more abundant carbon fixation pathway in the cake layer under aerobic conditions.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yongzhou Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rongjie Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yixin Jian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - How Yong Ng
- Centre for Water Research, Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Abstract
In recent years, anaerobic membrane bioreactor (AnMBRs) technology, a combination of a biological reactor and a selective membrane process, has received increasing attention from both industrialists and researchers. Undoubtedly, this is due to the fact that AnMBRs demonstrate several unique advantages. Firstly, this paper addresses fundamentals of the AnMBRs technology and subsequently provides an overview of the current state-of-the art in the municipal and domestic wastewaters treatment by AnMBRs. Since the operating conditions play a key role in further AnMBRs development, the impact of temperature and hydraulic retention time (HRT) on the AnMBRs performance in terms of organic matters removal is presented in detail. Although membrane technologies for wastewaters treatment are known as costly in operation, it was clearly demonstrated that the energy demand of AnMBRs may be lower than that of typical wastewater treatment plants (WWTPs). Moreover, it was indicated that AnMBRs have the potential to be a net energy producer. Consequently, this work builds on a growing body of evidence linking wastewaters treatment with the energy-efficient AnMBRs technology. Finally, the challenges and perspectives related to the full-scale implementation of AnMBRs are highlighted.
Collapse
|
10
|
Sibt-e-Hassan S, Hussain D, Mustafa G, Uddin Siddiqui G, Asiri YI, Uddin J, Ghulam Musharraf S. In-situ manipulation of gel layer fouling into gel layer membrane formation on porous supports for water treatment. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
11
|
Wu Y, Wei H, van der Mei HC, de Vries J, Busscher HJ, Ren Y. Inheritance of physico-chemical properties and ROS generation by carbon quantum dots derived from pyrolytically carbonized bacterial sources. Mater Today Bio 2021; 12:100151. [PMID: 34746735 PMCID: PMC8554632 DOI: 10.1016/j.mtbio.2021.100151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Bacteria are frequently used in industrial processes and nutrient supplementation to restore a healthy human microflora, but use of live bacteria is often troublesome. Here, we hypothesize that bacterially-derived carbon-quantum-dots obtained through pyrolytic carbonization inherit physico-chemical properties from probiotic and pathogenic source-bacteria. Carbon-quantum-dots carbonized at reaction-temperatures below 200 °C had negligible quantum-yields, while temperatures above 220 °C yielded poor water-suspendability. Fourier-transform infrared-spectroscopy demonstrated preservation of amide absorption bands in carbon-quantum-dots derived at intermediate temperatures. X-ray photoelectron-spectroscopy indicated that the at%N in carbon-quantum-dots increased with increasing amounts of protein in source-bacterial surfaces. Carbonization transformed hydrocarbon-like bacterial surface compounds into heterocyclic aromatic-carbon structures, evidenced by a broad infrared absorption band (920-900 cm−1) and the presence of carbon in C–C functionalities of carbon-quantum-dots. The chemical composition of bacterially-derived carbon-quantum-dots could be explained by the degradation temperatures of main bacterial cell surface compounds. All carbon-quantum-dots generated reactive-oxygen-species, most notably those derived from probiotic lactobacilli, carrying a high amount of surface protein. Concluding, amide functionalities in carbon-quantum-dots are inherited from surface proteins of source-bacteria, controlling reactive-oxygen-species generation. This paves the way for applications of bacterially-derived carbon-quantum-dots in which reactive-oxygen-species generation is essential, instead of hard-to-use live bacteria, such as in food supplementation or probiotic-assisted antibiotic therapy. Pyrolytic carbonization of bacteria between 200°C and 220°C yields water-suspendable CQDs. Bacterially-derived CQDs inherit amide functionalities from bacterial cell surface proteins. Hydrocarbon-like bacterial surface compounds give heterocyclic aromatic-carbon structures in bacterially-derived CQDs. Bacterially-derived CQDs possess graphitic nitrogen. Zeta potentials of CQDs relate with nitrogen occurrence in CQDs.
Collapse
Affiliation(s)
- Y Wu
- University of Groningen, University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - H Wei
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - H C van der Mei
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - J de Vries
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - H J Busscher
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Y Ren
- University of Groningen, University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
12
|
Corpuz MVA, Borea L, Senatore V, Castrogiovanni F, Buonerba A, Oliva G, Ballesteros F, Zarra T, Belgiorno V, Choo KH, Hasan SW, Naddeo V. Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147475. [PMID: 33971601 DOI: 10.1016/j.scitotenv.2021.147475] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The effect of addition of algae to activated sludge as active biomass in membrane bioreactors (MBRs) and electro-MBRs (e-MBRs) for wastewater remediation was examined in this study. The performances of Algae-Activated Sludge Membrane Bioreactor (AAS-MBR) and electro Algae-Activated Sludge Membrane Bioreactor (e-AAS-MBR) were compared to those observed in conventional MBR and e-MBR, which were previously reported and utilized activated sludge as biomass. The effect of application of electric field was also examined by the comparison of performances of e-AAS-MBR and AAS-MBR. Similar chemical oxygen demand (COD) reduction efficiencies of AAS-MBR, e-AAS-MBR, MBR, and e-MBR (98.35 ± 0.35%, 99.12 ± 0.08%, 97.70 ± 1.10%, and 98.10 ± 1.70%, respectively) were observed. The effect of the algae-activated sludge system was significantly higher in the nutrient removals. Ammoniacal nitrogen (NH3-N) removal efficiencies of AAS-MBR and e-AAS-MBR were higher by 43.89% and 26.61% than in the conventional MBR and e-MBR, respectively. Phosphate phosphorous (PO43--P) removals were also higher in AAS-MBR and e-AAS-MBR by 6.43% and 2.66% than those in conventional MBR and e-MBR. Membrane fouling rates in AAS-MBR and e-AAS-MBR were lower by 57.30% and 61.95% than in MBR and e-MBR, respectively. Lower concentrations of fouling substances were also observed in the reactors containing algae-activated sludge biomass. Results revealed that addition of algae improved nutrient removal and membrane fouling mitigation. The study also highlighted that the application of electric field in the e-AAS-MBR enhanced organic contaminants and nutrients removal, and fouling rate reduction.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Laura Borea
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Vincenzo Senatore
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Fabiano Castrogiovanni
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per la Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines; Department of Chemical Engineering, College of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy
| | - Kwang-Ho Choo
- Department of Environmental Engineering, Kyungpook National University (KNU), 80 Daehak-ro, Bukgu, Daegu 41566, Republic of Korea
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, 84084 Fisciano, Italy.
| |
Collapse
|
13
|
Maliwan T, Pungrasmi W, Lohwacharin J. Effects of microplastic accumulation on floc characteristics and fouling behavior in a membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124991. [PMID: 33454573 DOI: 10.1016/j.jhazmat.2020.124991] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Issues associated with accumulating microplastic (MP) in sewage sludge during wastewater treatment in a membrane bioreactor (MBR) system have not been studied in detail. Here, we investigated the microplastic's effects on floc characteristics, microbial community compositions, and fouling behavior inside sequencing-batch MBRs. MBRs were operated with 0, 7, 15, and 75 MPs/L of feed for 124-days. Results indicated that MP presence decreased sludge floc size, floc hydrophobicity, and extracellular polymeric substance (EPS) molecular size, and increased EPS concentration and the floc's negative zeta potential. These results were attributed to the facilitation of divalent cation (Ca2+ and Mg2+) uptake by MPs that weakened ion-bridging interactions within the sludge flocs. MPs accumulation slightly affected microbial structure and diversity. Relative abundances of dominant phyla, Actinobacteria, also decreased substantially. MPs also acted like a scouring material on membrane surfaces, inducing transformation of matured biofilm structures where protein content was substantially lower than nucleic acid content, in contrast to the control. Overall, MPs' negative effects on sludge flocs were counteracted by their scouring effect; consequently, SB-MBRs operated up to 4 months did not suffer from severe cake fouling, compared to control.
Collapse
Affiliation(s)
- Thitiwut Maliwan
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Wiboonluk Pungrasmi
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phyathai Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand; Research Network of NANOTEC-CU (RNN) on Environment, Chulalongkorn University, Bangkok 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
14
|
Nilusha RT, Wei Y. New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). MEMBRANES 2021; 11:108. [PMID: 33546268 PMCID: PMC7913466 DOI: 10.3390/membranes11020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 11/17/2022]
Abstract
Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater.
Collapse
Affiliation(s)
- Rathmalgodage Thejani Nilusha
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Environment Technology Section, Industrial Technology Institute, 363, Bauddhaloka Mawatha, Colombo 07 00700, Sri Lanka; or
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330029, China
| |
Collapse
|
15
|
Hansen SH, Nierychlo M, Christensen ML, Nielsen PH, Jørgensen MK. Fouling of membranes in membrane bioreactors for wastewater treatment: Planktonic bacteria can have a significant contribution. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:207-216. [PMID: 32645226 DOI: 10.1002/wer.1392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Membrane bioreactors (MBRs) for wastewater treatment show great potentials in the sustainable development of urban environments. However, fouling of membranes remains the largest challenge of MBR technology. Dissolved extracellular polymeric substances (EPS) are often assumed be the main foulant in MBRs. However, single bacterial cells are often erroneously measured as EPS in traditional spectrophotometric analysis of EPS in activated sludge, so we hypothesized that single cells in many cases could be the true foulants in MBRs for wastewater treatment. To study this, raw MBR sludge and sludge supernatant with varying concentrations of planktonic cells were filtered on microfiltration (MF) membranes, and we found a direct correlation between the cell count and rate of flux decline. Addition of planktonic cells to fresh MBR sludge dramatically increased the flux decline. The identity of the most abundant planktonic cells in a full-scale MBR water resource recovery facility was determined by DNA fingerprinting. Many of these genera are known to be abundant in influent wastewater suggesting that the influent bacterial cells may have a direct effect on the fouling propensity in MBR systems. This new knowledge may lead to new anti-fouling strategies targeting incoming planktonic bacteria from the wastewater feed. PRACTITIONER POINTS: Planktonic cells constituted up to 60% of the total protein content of "soluble extracellular polymeric substances" in membrane bioreactor sludge. Planktonic cells are hidden under a surrogate concentration of extracellular polymeric substances which is often associated with fouling. Membrane fouling rate is directly proportional to amount of free planktonic cells suspended in sludge. Several influent bacterial genera are enriched in the water phase of membrane bioreactor sludge. Removing these may mitigate fouling.
Collapse
Affiliation(s)
- Susan Hove Hansen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Morten L Christensen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| | - Per Halkjaer Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Mads Koustrup Jørgensen
- Department of Chemistry and Bioscience, Center for Membrane Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
16
|
Quantifying the Effect of COD to TN Ratio, DO Concentration and Temperature on Filamentous Microorganisms’ Population and Trans-Membrane Pressure (TMP) in Membrane Bio-Reactors (MBR). Processes (Basel) 2020. [DOI: 10.3390/pr8111514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Using moderate populations of filaments in the biomass of Membrane Bio-Reactors (MBRs) is a biological anti-fouling method which has been increasingly applied over the last few years. This study aims to quantify the effect of COD to TN ratio, Dissolved Oxygen (DO) concentration and temperature on filaments’ population and Trans-Membrane Pressure (TMP) in a pilot-scale MBR, with a view to reducing membrane fouling. The novelty of the present work concerns the development of a mathematical equation that correlates fouling rate (dTMP/dt) with the population of filamentous microorganisms, assessed by the Filament Index (FI), and with the concentration of the carbohydrate fraction of Soluble Microbial Products (SMPc). Apart from TMP and SMPc, other fouling-related biomass characteristics, such as sludge filterability and settleability, were also examined. It was shown that at high COD to TN ratio (10:1), low DO concentration in the filaments’ tank (0.5 ± 0.3 mg/L) and high temperature (24–30 °C), a moderate population of filaments is developed (FI = 1–2), which delays the TMP rise. Under these conditions, sludge filterability and settleability were also enhanced. Finally, TMP data analysis showed that the fouling rate is affected by FI and SMPc concentration mainly in the long-term fouling stage and increases exponentially with their increase.
Collapse
|
17
|
Biofilm as a live and in-situ formed membrane for solids separation in bioreactors: Biofilm succession governs resistance variation demonstrated during the start-up period. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Optimization of In Situ Backwashing Frequency for Stable Operation of Anaerobic Ceramic Membrane Bioreactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.
Collapse
|