1
|
Jang HJ, Joung HA, Goncharov A, Kanegusuku AG, Chan CW, Yeo KTJ, Zhuang W, Ozcan A, Chen J. Deep Learning-Based Kinetic Analysis in Paper-Based Analytical Cartridges Integrated with Field-Effect Transistors. ACS NANO 2024; 18:24792-24802. [PMID: 39252606 DOI: 10.1021/acsnano.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
This study explores the fusion of a field-effect transistor (FET), a paper-based analytical cartridge, and the computational power of deep learning (DL) for quantitative biosensing via kinetic analyses. The FET sensors address the low sensitivity challenge observed in paper analytical devices, enabling electrical measurements with kinetic data. The paper-based cartridge eliminates the need for surface chemistry required in FET sensors, ensuring economical operation (cost < $0.15/test). The DL analysis mitigates chronic challenges of FET biosensors such as sample matrix interference, by leveraging kinetic data from target-specific bioreactions. In our proof-of-concept demonstration, our DL-based analyses showcased a coefficient of variation of <6.46% and a decent concentration measurement correlation with an r2 value of >0.976 for cholesterol testing when blindly compared to results obtained from a CLIA-certified clinical laboratory. These integrated technologies have the potential to advance FET-based biosensors, potentially transforming point-of-care diagnostics and at-home testing through enhanced accessibility, ease-of-use, and accuracy.
Collapse
Affiliation(s)
- Hyun-June Jang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Hyou-Arm Joung
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Artem Goncharov
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Anastasia Gant Kanegusuku
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, Illinois 60153, United States
| | - Clarence W Chan
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kiang-Teck Jerry Yeo
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wen Zhuang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Aydogan Ozcan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| | - Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Jankowska K, Sigurdardóttir SB, Zdarta J, Pinelo M. Co-immobilization and compartmentalization of cholesterol oxidase, glucose oxidase and horseradish peroxidase for improved thermal and H2O2 stability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
KOIZUMI N, NISHIYAMA R, MASADOME T. Sequential Injection Analysis of Butyrylcholinesterase Using Butyrylcholine Ion-Selective Electrode Detector. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Narimasa KOIZUMI
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| | - Ryusei NISHIYAMA
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| | - Takashi MASADOME
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| |
Collapse
|
4
|
TAKAHASHI Y, MASADOME T. Determination of Lactate by Sequential Injection Analysis Using a Fluoride Ion-selective Electrode Detector. ELECTROCHEMISTRY 2020. [DOI: 10.5796/electrochemistry.20-00097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yuichi TAKAHASHI
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| | - Takashi MASADOME
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| |
Collapse
|
5
|
Abstract
A brief overview of articles published in this Special Issue of Molecules titled “Modern Flow Analysis” is provided. In addition to cross-sectional and methodological works, there are some reports on new technical and instrumental achievements. It has been shown that all these papers create a good picture of contemporary flow analysis, revealing the most current trends and problems in this branch of flow chemistry.
Collapse
|