1
|
Utama S, Cale JM, Mitrpant C, Fletcher S, Wilton SD, Aung-Htut MT. Is Exon Skipping a Viable Therapeutic Approach for Vascular Ehlers-Danlos Syndrome with Mutations in COL3A1 Exon 10 or 15? Int J Mol Sci 2024; 25:8816. [PMID: 39201504 PMCID: PMC11354334 DOI: 10.3390/ijms25168816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Vascular Ehlers-Danlos syndrome or Ehlers-Danlos syndrome type IV (vEDS) is a connective tissue disorder characterised by skin hyperextensibility, joint hypermobility and fatal vascular rupture caused by COL3A1 mutations that affect collagen III expression, homo-trimer assembly and secretion. Along with collagens I, II, V and XI, collagen III plays an important role in the extracellular matrix, particularly in the inner organs. To date, only symptomatic treatment for vEDS patients is available. Fibroblasts derived from vEDS patients carrying dominant negative and/or haploinsufficiency mutations in COL3A1 deposit reduced collagen III in the extracellular matrix. This study explored the potential of an antisense oligonucleotide (ASO)-mediated splice modulating strategy to bypass disease-causing COL3A1 mutations reported in the in-frame exons 10 and 15. Antisense oligonucleotides designed to redirect COL3A1 pre-mRNA processing and excise exons 10 or 15 were transfected into dermal fibroblasts derived from vEDS patients and a healthy control subject. Efficient exon 10 or 15 excision from the mature COL3A1 mRNA was achieved and intracellular collagen III expression was increased after treatment with ASOs; however, collagen III deposition into the extracellular matrix was reduced in patient cells. The region encoded by exon 10 includes a glycosylation site, and exon 15 encodes hydroxyproline and hydroxylysine-containing triplet repeats, predicted to be crucial for collagen III assembly. These results emphasize the importance of post-translational modification for collagen III homo-trimer assembly. In conclusion, while efficient skipping of target COL3A1 exons was achieved, the induced collagen III isoforms generated showed defects in extracellular matrix formation. While therapeutic ASO-mediated exon skipping is not indicated for the patients in this study, the observations are restricted to exons 10 and 15 and may not be applicable to other collagen III in-frame exons.
Collapse
Affiliation(s)
- Sasiwimon Utama
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.U.); (C.M.)
- Centre of Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (S.F.); (S.D.W.)
| | - Jessica M. Cale
- Centre of Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.U.); (C.M.)
| | - Sue Fletcher
- Centre of Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (S.F.); (S.D.W.)
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Centre of Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Centre of Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (J.M.C.); (S.F.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
2
|
Bardhan A, Brown W, Albright S, Tsang M, Davidson LA, Deiters A. Direct Activation of Nucleobases with Small Molecules for the Conditional Control of Antisense Function. Angew Chem Int Ed Engl 2024; 63:e202318773. [PMID: 38411401 DOI: 10.1002/anie.202318773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Conditionally controlled antisense oligonucleotides provide precise interrogation of gene function at different developmental stages in animal models. Only one example of small molecule-induced activation of antisense function exist. This has been restricted to cyclic caged morpholinos that, based on sequence, can have significant background activity in the absence of the trigger. Here, we provide a new approach using azido-caged nucleobases that are site-specifically introduced into antisense morpholinos. The caging group design is a simple azidomethylene (Azm) group that, despite its very small size, efficiently blocks Watson-Crick base pairing in a programmable fashion. Furthermore, it undergoes facile decaging via Staudinger reduction when exposed to a small molecule phosphine, generating the native antisense oligonucleotide under conditions compatible with biological environments. We demonstrated small molecule-induced gene knockdown in mammalian cells, zebrafish embryos, and frog embryos. We validated the general applicability of this approach by targeting three different genes.
Collapse
Affiliation(s)
- Anirban Bardhan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Tsang
- Department of Cell Biology, Center for Integrative Organ Systems., University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Lance A Davidson
- Department of Bioengineering, Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
3
|
Chen S, Heendeniya SN, Le BT, Rahimizadeh K, Rabiee N, Zahra QUA, Veedu RN. Splice-Modulating Antisense Oligonucleotides as Therapeutics for Inherited Metabolic Diseases. BioDrugs 2024; 38:177-203. [PMID: 38252341 PMCID: PMC10912209 DOI: 10.1007/s40259-024-00644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The last decade (2013-2023) has seen unprecedented successes in the clinical translation of therapeutic antisense oligonucleotides (ASOs). Eight such molecules have been granted marketing approval by the United States Food and Drug Administration (US FDA) during the decade, after the first ASO drug, fomivirsen, was approved much earlier, in 1998. Splice-modulating ASOs have also been developed for the therapy of inborn errors of metabolism (IEMs), due to their ability to redirect aberrant splicing caused by mutations, thus recovering the expression of normal transcripts, and correcting the deficiency of functional proteins. The feasibility of treating IEM patients with splice-switching ASOs has been supported by FDA permission (2018) of the first "N-of-1" study of milasen, an investigational ASO drug for Batten disease. Although for IEM, owing to the rarity of individual disease and/or pathogenic mutation, only a low number of patients may be treated by ASOs that specifically suppress the aberrant splicing pattern of mutant precursor mRNA (pre-mRNA), splice-switching ASOs represent superior individualized molecular therapeutics for IEM. In this work, we first summarize the ASO technology with respect to its mechanisms of action, chemical modifications of nucleotides, and rational design of modified oligonucleotides; following that, we precisely provide a review of the current understanding of developing splice-modulating ASO-based therapeutics for IEM. In the concluding section, we suggest potential ways to improve and/or optimize the development of ASOs targeting IEM.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Saumya Nishanga Heendeniya
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Bao T Le
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia
| | - Kamal Rahimizadeh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Qurat Ul Ain Zahra
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia.
- ProGenis Pharmaceuticals Pty Ltd, Bentley, WA, 6102, Australia.
| |
Collapse
|
4
|
Tekintaş Y, Temel A. Antisense oligonucleotides: a promising therapeutic option against infectious diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1-39. [PMID: 37395450 DOI: 10.1080/15257770.2023.2228841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Infectious diseases have been one of the biggest health problems of humanity for centuries. Nucleic acid-based therapeutics have received attention in recent years with their effectiveness in the treatment of various infectious diseases and vaccine development studies. This review aims to provide a comprehensive understanding of the basic properties underlying the mechanism of antisense oligonucleotides (ASOs), their applications, and their challenges. The efficient delivery of ASOs is the greatest challenge for their therapeutic success, but this problem is overcome with new-generation antisense molecules developed with chemical modifications. The types, carrier molecules, and gene regions targeted by sequences have been summarized in detail. Research and development of antisense therapy is still in its infancy; however, gene silencing therapies appear to have the potential for faster and longer-lasting activity than conventional treatment strategies. On the other hand, realizing the potential of antisense therapy will require a large initial economic investment to ascertain the pharmacological properties and learn how to optimize them. The ability of ASOs to be rapidly designed and synthesized to target different microbes can reduce drug discovery time from 6 years to 1 year. Since ASOs are not particularly affected by resistance mechanisms, they come to the fore in the fight against antimicrobial resistance. The design-based flexibility of ASOs has enabled it to be used for different types of microorganisms/genes and successful in vitro and in vivo results have been revealed. The current review summarized a comprehensive understanding of ASO therapy in combating bacterial and viral infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
5
|
Vats S, Ballesteros C, Hung S, Sparapani S, Wong K, Haruna J, Li C, Authier S. An Overview of Gene Editing Modalities and Related Non-clinical Testing Considerations. Int J Toxicol 2023; 42:207-218. [PMID: 36762691 DOI: 10.1177/10915818231153996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gene therapy has become an important modality for a wide range of therapeutic indications with a rapid increase in the number of therapeutic candidates being developed in this field. Understanding the molecular biology underlying the gene therapy is often critical to develop appropriate safety assessment strategies. We aimed to discuss some of the commonly used gene therapy modalities and common preclinical toxicology testing considerations when developing gene therapies. Non-viral gene delivery methods such as electroporation, microinjection, peptide nanoparticles and lipid nanoparticles are deployed as innovative molecular molecular construct which are included in the design of novel gene therapies and the associated molecular biology mechanisms have become relevant knowledge to non-clinical toxicology. Viral gene delivery methodologies including Adenovirus vectors, Adeno-Associated virus vectors and Lentivirus gene therapy vectors have also advanced considerably across numerous therapeutic areas, raising unique non-clinical toxicology and immunological considerations. General toxicology, biodistribution and tumorigenicity are the pillars of non-clinical safety testing in gene therapies. Evaluating the tumorigenicity potential of a gene editing therapy often leverages molecular pathology while some translational challenges remain. Toxicology study design is entering a new era where science-driven customized approaches and program specific considerations have become the norm.
Collapse
Affiliation(s)
- Srishti Vats
- 70294Charles River Laboratories, Laval, QC, Canada
| | | | - Selly Hung
- 70294Charles River Laboratories, Laval, QC, Canada
| | | | - Karen Wong
- 70294Charles River Laboratories, Laval, QC, Canada
| | | | - Christian Li
- 70294Charles River Laboratories, Laval, QC, Canada
| | | |
Collapse
|
6
|
Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics 2022; 14:2389. [PMID: 36365206 PMCID: PMC9695718 DOI: 10.3390/pharmaceutics14112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are disease-modifying agents affecting protein-coding and noncoding ribonucleic acids. Depending on the chemical modification and the location of hybridization, ASOs are able to reduce the level of toxic proteins, increase the level of functional protein, or modify the structure of impaired protein to improve function. There are multiple challenges in delivering ASOs to their site of action. Chemical modifications in the phosphodiester bond, nucleotide sugar, and nucleobase can increase structural thermodynamic stability and prevent ASO degradation. Furthermore, different particles, including viral vectors, conjugated peptides, conjugated antibodies, and nanocarriers, may improve ASO delivery. To date, six ASOs have been approved by the US Food and Drug Administration (FDA) in three neurological disorders: spinal muscular atrophy, Duchenne muscular dystrophy, and polyneuropathy caused by hereditary transthyretin amyloidosis. Ongoing preclinical and clinical studies are assessing the safety and efficacy of ASOs in multiple genetic and acquired neurological conditions. The current review provides an update on underlying mechanisms, design, chemical modifications, and delivery of ASOs. The administration of FDA-approved ASOs in neurological disorders is described, and current evidence on the safety and efficacy of ASOs in other neurological conditions, including pediatric neurological disorders, is reviewed.
Collapse
Affiliation(s)
- Man Amanat
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amena Smith Fine
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris G. Leung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Tang H, Kong L, Yang Y, Li J, Zou H. Puerarin suppresses hypoxia-induced vascular endothelial growth factor upregulation in human retinal pigmented epithelial cells by blocking JAK2/STAT3 pathway. Bioengineered 2022; 13:11636-11645. [PMID: 35510332 PMCID: PMC9275891 DOI: 10.1080/21655979.2022.2070586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The purpose of this study was to explore the mechanism by which puerarin regulated the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in humans' retinal pigment epithelial (RPE) cells under hypoxia. RPE cells (ARPE-19 and D407 cells) and a rat model of oxygen-induced retinopathy were used in the current study. Western blotting and ELISA were performed to detect the level of JAK2, phosphorylated JAK2, STAT3, phosphorylated STAT3, HIF-1α, and VEGF in cells. In addition, the interaction between JAK2 and STAT3 was determined using with a co-immunoprecipitation assay. We found puerarin inhibited hypoxia-induced upregulation of VEGF at both the mRNA and protein level via decreasing HIF-1α expression in RPE cells. Moreover, puerarin attenuated the interaction between JAK2 and STAT3, and subsequently blocking p-STAT3 nucleus translocation in vitro and in vivo. In conclusion, puerarin could effectively inhibit hypoxia-induced VEGF upregulation in RPE cells via mediated JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Huixin Tang
- Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai China
| | - Lingchun Kong
- Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai China
| | - Yuqin Yang
- Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai China
| | - Jingjing Li
- Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai China
| | - Hong Zou
- Department of Ophthalmology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai China
| |
Collapse
|
8
|
Abstract
Antisense oligonucleotides (AONs) are small synthetic molecules of therapeutic interest for a variety of human disease. Their ability to bind mRNA and affect its splicing gives AONs potential use for exon skipping therapies aimed at restoring the dystrophin transcript reading frame for Duchenne muscular dystrophy (DMD) patients. The neutrally charged phosphorodiamidate morpholino oligomers (PMOs) are a stable and relatively nontoxic AON modification. To assess exon skipping efficiency in vitro, it is important to deliver them to target cells. Here, we describe a method for the delivery of PMOs to myoblasts by electroporation. The described protocol for the Amaxa 4D X unit nucleofector system allows efficient processing of 16 samples in one nucleocuvette strip, aiding in high-throughput PMO efficacy screens.
Collapse
Affiliation(s)
- Remko Goossens
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
McIntosh CS, Watts GF, Wilton SD, Aung-Htut MT. Splice correction therapies for familial hypercholesterolemic patients with low-density lipoprotein receptor mutations. Curr Opin Lipidol 2021; 32:355-362. [PMID: 34653074 PMCID: PMC8631153 DOI: 10.1097/mol.0000000000000793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Antisense oligomers (ASOs) have been available for decades: however, only recently have these molecules been applied clinically. This review aims to discuss the possible development of antisense-mediated splice correction therapies as precision medicines for familial hypercholesterolemic patients carrying mutations that compromise normal splicing of the low-density lipoprotein receptor (LDLR) gene transcript. RECENT FINDINGS Three antisense drugs are currently being assessed in ongoing clinical trials for dyslipidemias, aiming to lower the plasma concentrations of lipoproteins that lead to end-organ damage, principally coronary artery disease. Although a handful of drugs may be applicable to many patients with familial hypercholesterolemia (FH), mutation-specific personalised antisense drugs may be even more effective in selected patients. Currently, there is no therapy that effectively addresses mutations in the LDLR, the major cause of FH. Many mutations in the LDLR that disrupt normal pre-mRNA processing could be applicable to splice correction therapy to restore receptor activity. SUMMARY Precision medicine could provide long-term economic and social benefits if they can be implemented effectively and sustainably. Many mutations found in the LDLR gene could be amendable to therapeutic splice correction and we should consider developing a therapeutic ASO platform for these mutations.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Gerald F. Watts
- School of Medicine, University of Western Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - May T. Aung-Htut
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
10
|
Zou W, Wang Y, Song Q, Li Q, Ren J, Liu X, Cui W. Ultrasound-targeted microbubble destruction mediated miR-492 inhibitor suppresses the tumorigenesis in non-small cell lung cancer. Ann Med 2021; 53:2246-2255. [PMID: 34818961 PMCID: PMC8805898 DOI: 10.1080/07853890.2021.2005254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Ultrasound-targeted microbubble destruction (UTMD) is a novel adjuvant tumor therapeutic method by enhancing exogenous gene transfection to target tissues. This study aims to investigate the role of microRNA-492 (miR-492) in non-small cell lung cancer (NSCLC) and further analyze the effects of UTMD-mediated miR-492 inhibitor on tumorigenesis. METHODS The expression of miR-492 was detected by qRT-PCR. Co-transfection of microbubbles and miR-492 inhibitor with Lipofectamine 3000 was performed to achieve UTMD-mediated miR-492 inhibition in NSCLC cells. CCK-8 and Transwell assay were used to determine NSCLC cell proliferation, and the migration and invasion. RESULT High expression of miR-492 was associated with poor prognosis in NSCLC patients. miR-492 inhibitor suppressed tumor cell proliferation, migration and invasion, and UTMD not only increased the transfection efficiency of miR-492 inhibitor, but also enhance the inhibitory effects on cell biological behaviors. CONCLUSION The results showed that the expression level of miR-492 was up-regulated in NSCLC tissue samples and cells. Silencing of miR-492 inhibited NSCLC cell proliferation, migration and invasion, and UTMD-mediated miR-492 inhibitor could promote more significant inhibition, which indicated that UTMD-mediated miR-492 inhibitor might provide a novel strategy for the treatment of NSCLC.KEY MESSAGESmiR-492 inhibitor inhibited cell proliferation, migration and invasion.UTMD-mediated miR-492 inhibitor can promote more significant inhibition.UTMD-mediated miR-492 inhibitor provide a new strategy for NSCLC.
Collapse
Affiliation(s)
- Wendi Zou
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Yan Wang
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Qingqing Song
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Qianqian Li
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Jie Ren
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Xiaoyu Liu
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| | - Wei Cui
- Ultrasound Department, Shengli Oilfield Central Hospital, Dongying, China
| |
Collapse
|
11
|
Li D, McIntosh CS, Mastaglia FL, Wilton SD, Aung-Htut MT. Neurodegenerative diseases: a hotbed for splicing defects and the potential therapies. Transl Neurodegener 2021; 10:16. [PMID: 34016162 PMCID: PMC8136212 DOI: 10.1186/s40035-021-00240-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is a fundamental step in eukaryotic gene expression that systematically removes non-coding regions (introns) and ligates coding regions (exons) into a continuous message (mature mRNA). This process is highly regulated and can be highly flexible through a process known as alternative splicing, which allows for several transcripts to arise from a single gene, thereby greatly increasing genetic plasticity and the diversity of proteome. Alternative splicing is particularly prevalent in neuronal cells, where the splicing patterns are continuously changing to maintain cellular homeostasis and promote neurogenesis, migration and synaptic function. The continuous changes in splicing patterns and a high demand on many cis- and trans-splicing factors contribute to the susceptibility of neuronal tissues to splicing defects. The resultant neurodegenerative diseases are a large group of disorders defined by a gradual loss of neurons and a progressive impairment in neuronal function. Several of the most common neurodegenerative diseases involve some form of splicing defect(s), such as Alzheimer's disease, Parkinson's disease and spinal muscular atrophy. Our growing understanding of RNA splicing has led to the explosion of research in the field of splice-switching antisense oligonucleotide therapeutics. Here we review our current understanding of the effects alternative splicing has on neuronal differentiation, neuronal migration, synaptic maturation and regulation, as well as the impact on neurodegenerative diseases. We will also review the current landscape of splice-switching antisense oligonucleotides as a therapeutic strategy for a number of common neurodegenerative disorders.
Collapse
Affiliation(s)
- Dunhui Li
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Craig Stewart McIntosh
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Frank Louis Mastaglia
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - Steve Donald Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Perth, Western Australia, Australia.
| |
Collapse
|
12
|
Flynn LL, Mitrpant C, Adams A, Pitout IL, Stirnweiss A, Fletcher S, Wilton SD. Targeted SMN Exon Skipping: A Useful Control to Assess In Vitro and In Vivo Splice-Switching Studies. Biomedicines 2021; 9:552. [PMID: 34069072 PMCID: PMC8156830 DOI: 10.3390/biomedicines9050552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
The literature surrounding the use of antisense oligonucleotides continues to grow, with new disease and mechanistic applications constantly evolving. Furthermore, the discovery and advancement of novel chemistries continues to improve antisense delivery, stability and effectiveness. For each new application, a rational sequence design is recommended for each oligomer, as is chemistry and delivery optimization. To confirm oligomer delivery and antisense activity, a positive control AO sequence with well characterized target-specific effects is recommended. Here, we describe splice-switching antisense oligomer sequences targeting the ubiquitously expressed human and mouse SMN and Smn genes for use as control AOs for this purpose. We report two AO sequences that induce targeted skipping of SMN1/SMN2 exon 7 and two sequences targeting the Smn gene, that induce skipping of exon 5 and exon 7. These antisense sequences proved effective in inducing alternative splicing in both in vitro and in vivo models and are therefore broadly applicable as controls. Not surprisingly, we discovered a number of differences in efficiency of exon removal between the two species, further highlighting the differences in splice regulation between species.
Collapse
Affiliation(s)
- Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- Black Swan Pharmaceuticals, Wake Forest, NC 27587, USA
| | - Chalermchai Mitrpant
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Abbie Adams
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | | | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
13
|
Ham KA, Aung-Htut MT, Fletcher S, Wilton SD. Nonsequential Splicing Events Alter Antisense-Mediated Exon Skipping Outcome in COL7A1. Int J Mol Sci 2020; 21:ijms21207705. [PMID: 33081018 PMCID: PMC7590164 DOI: 10.3390/ijms21207705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
The COL7A1 gene encodes homotrimer fibrils essential for anchoring dermal and epidermal layers, and pathogenic mutations in COL7A1 can cause recessive or dominant dystrophic epidermolysis bullosa. As a monogenic disease gene, COL7A1 constitutes a potential target for antisense oligomer-mediated exon skipping, a therapy applicable to a growing number of other genetic disorders. However, certain characteristics of COL7A1: many exons, low average intron size, and repetitive and guanine-cytosine rich coding sequence, present challenges to the design of specific and effective antisense oligomers. While targeting COL7A1 exons 10 and 73 for excision from the mature mRNA, we discovered that antisense oligomers comprised of 2′-O-methyl modified bases on a phosphorothioate backbone and phosphorodiamidate morpholino oligomers produced similar, but distinctive, splicing patterns including excision of adjacent nontargeted exons and/or retention of nearby introns in some transcripts. We found that the nonsequential splicing of certain introns may alter pre-mRNA processing during antisense oligomer-mediated exon skipping and, therefore, additional studies are required to determine if the order of intron removal influences multiexon skipping and/or intron retention in processing of the COL7A1 pre-mRNA.
Collapse
Affiliation(s)
- Kristin A. Ham
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, Australia
| | - May Thandar Aung-Htut
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch 6150, Australia; (K.A.H.); (M.T.A.-H.); (S.F.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
14
|
Practical Synthesis of Quinoline-Protected Morpholino Oligomers for Light-Triggered Regulation of Gene Function. Molecules 2020; 25:molecules25092078. [PMID: 32365635 PMCID: PMC7248704 DOI: 10.3390/molecules25092078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
Photoactivatable cyclic caged morpholino oligomers (ccMOs) represent a promising tool to selectively regulate gene expression with spatiotemporal control. Nevertheless, some challenges associated with the preparation of these reagents have limited their broader use in biological settings. We describe a novel ccMO design that overcomes many of the challenges and considerably expedites the synthetic preparation. The key factor is the introduction of an ethynyl function on the photocleavable linker to facilitate the use of a Huisgen 1,3-dipolar cycloaddition for the coupling reaction with the oligonucleotide. Compared to previous strategies, this modification reduces the number of synthetic steps and significantly improves the total yield and the stability of the linker. We used the alkynyl-functionalized linker for the preparation of two different ccMOs targeting the mRNA of the glutamic acid decarboxylase genes, gad1 and gad2. HPLC analysis confirms that the caging strategy successfully inhibits the DNA binding ability, and the activity can be restored by brief illumination with 405-nm light. Overall, the straightforward preparation together with the clean and fast photochemistry make these caged antisense reagents excellent tools to modulate gene function in-vivo with spatial and temporal precision.
Collapse
|
15
|
McIntosh CS, Aung-Htut MT, Fletcher S, Wilton SD. Removal of the Polyglutamine Repeat of Ataxin-3 by Redirecting pre-mRNA Processing. Int J Mol Sci 2019; 20:ijms20215434. [PMID: 31683630 PMCID: PMC6862616 DOI: 10.3390/ijms20215434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a devastating neurodegenerative disease for which there is currently no cure, nor effective treatment strategy. One of nine polyglutamine disorders known to date, SCA3 is clinically heterogeneous and the main feature is progressive ataxia, which in turn affects speech, balance and gait of the affected individual. SCA3 is caused by an expanded polyglutamine tract in the ataxin-3 protein, resulting in conformational changes that lead to toxic gain of function. The expanded glutamine tract is located at the 5′ end of the penultimate exon (exon 10) of ATXN3 gene transcript. Other studies reported removal of the expanded glutamine tract using splice switching antisense oligonucleotides. Here, we describe improved efficiency in the removal of the toxic polyglutamine tract of ataxin-3 in vitro using phosphorodiamidate morpholino oligomers, when compared to antisense oligonucleotides composed of 2′-O-methyl modified bases on a phosphorothioate backbone. Significant downregulation of both the expanded and non-expanded protein was induced by the morpholino antisense oligomer, with a greater proportion of ataxin-3 protein missing the polyglutamine tract. With growing concerns over toxicity associated with long-term administration of phosphorothioate oligonucleotides, the use of a phosphorodiamidate morpholino oligomer may be preferable for clinical application. These results suggest that morpholino oligomers may provide greater therapeutic benefit for the treatment of spinocerebellar ataxia type 3, without toxic effects.
Collapse
Affiliation(s)
- Craig S McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands WA 6009, Australia.
| | - May Thandar Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands WA 6009, Australia.
| | - Sue Fletcher
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands WA 6009, Australia.
| | - Steve D Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch WA 6150, Australia.
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands WA 6009, Australia.
| |
Collapse
|
16
|
Systematic Approach to Developing Splice Modulating Antisense Oligonucleotides. Int J Mol Sci 2019; 20:ijms20205030. [PMID: 31614438 PMCID: PMC6834167 DOI: 10.3390/ijms20205030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
The process of pre-mRNA splicing is a common and fundamental step in the expression of most human genes. Alternative splicing, whereby different splice motifs and sites are recognised in a developmental and/or tissue-specific manner, contributes to genetic plasticity and diversity of gene expression. Redirecting pre-mRNA processing of various genes has now been validated as a viable clinical therapeutic strategy, providing treatments for Duchenne muscular dystrophy (inducing specific exon skipping) and spinal muscular atrophy (promoting exon retention). We have designed and evaluated over 5000 different antisense oligonucleotides to alter splicing of a variety of pre-mRNAs, from the longest known human pre-mRNA to shorter, exon-dense primary gene transcripts. Here, we present our guidelines for designing, evaluating and optimising splice switching antisense oligomers in vitro. These systematic approaches assess several critical factors such as the selection of target splicing motifs, choice of cells, various delivery reagents and crucial aspects of validating assays for the screening of antisense oligonucleotides composed of 2′-O-methyl modified bases on a phosphorothioate backbone.
Collapse
|