1
|
Sanches VHDS, Lobato CC, Silva LB, dos Santos IVF, Barros EDS, Maciel ADA, Ferreira EFB, da Costa KS, Espejo-Román JM, Rosa JMC, Kimani NM, Santos CBR. Rational Approach to New Chemical Entities with Antiproliferative Activity on Ab1 Tyrosine Kinase Encoded by the BCR-ABL Gene: An Hierarchical Biochemoinformatics Analysis. Pharmaceuticals (Basel) 2024; 17:1491. [PMID: 39598402 PMCID: PMC11597596 DOI: 10.3390/ph17111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background: This study began with a search in three databases, totaling six libraries (ChemBridge-DIVERSet, ChemBridge-DIVERSet-EXP, Zinc_Drug Database, Zinc_Natural_Stock, Zinc_FDA_BindingDB, Maybridge) with approximately 2.5 million compounds with the aim of selecting potential inhibitors with antiproliferative activity on the chimeric tyrosine kinase encoded by the BCR-ABL gene. Methods: Through hierarchical biochemoinformatics, ADME/Tox analyses, biological activity prediction, molecular docking simulations, synthetic accessibility and theoretical synthetic routes of promising compounds and their lipophilicity and water solubility were realized. Results: Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the top100/base (600 structures), in comparison with the commercial drug imatinib, showed that only nine exhibited the desired properties. In the prediction of biological activity, the results of the nine selected structures ranged from 13.7% < Pa < 65.8%, showing them to be potential protein kinase inhibitors. In the molecular docking simulations, the promising molecules LMQC01 and LMQC04 showed significant values in molecular targeting (PDB 1IEP-resolution 2.10 Å). LMQC04 presented better binding affinity (∆G = -12.2 kcal mol-1 with a variation of ±3.6 kcal mol-1) in relation to LMQC01. The LMQC01 and LMQC04 molecules were advanced for molecular dynamics (MD) simulation followed by Molecular Mechanics with generalized Born and Surface Area solvation (MM-GBSA); the comparable, low and stable RMSD and ΔE values for the protein and ligand in each complex suggest that the selected compounds form a stable complex with the Abl kinase domain. This stability is a positive indicator that LMQC01 and LMQC04 can potentially inhibit enzyme function. Synthetic accessibility (SA) analysis performed on the AMBIT and SwissADME webservers showed that LMQC01 and LMQC04 can be considered easy to synthesize. Our in silico results show that these molecules could be potent protein kinase inhibitors with potential antiproliferative activity on tyrosine kinase encoded by the BCR-ABL gene. Conclusions: In conclusion, the results suggest that these ligands, particularly LMQC04, may bind strongly to the studied target and may have appropriate ADME/Tox properties in experimental studies. Considering future in vitro or in vivo assays, we elaborated the theoretical synthetic routes of the promising compounds identified in the present study. Based on our in silico findings, the selected ligands show promise for future studies in developing chronic myeloid leukemia treatments.
Collapse
Affiliation(s)
- Vitor H. da S. Sanches
- Biodiversity and Biotechnology Network of the Legal Amazon, Biotechnology Department, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (V.H.d.S.S.); (C.C.L.); (L.B.S.); (I.V.F.d.S.)
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
| | - Cleison C. Lobato
- Biodiversity and Biotechnology Network of the Legal Amazon, Biotechnology Department, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (V.H.d.S.S.); (C.C.L.); (L.B.S.); (I.V.F.d.S.)
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
| | - Luciane B. Silva
- Biodiversity and Biotechnology Network of the Legal Amazon, Biotechnology Department, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (V.H.d.S.S.); (C.C.L.); (L.B.S.); (I.V.F.d.S.)
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
| | - Igor V. F. dos Santos
- Biodiversity and Biotechnology Network of the Legal Amazon, Biotechnology Department, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (V.H.d.S.S.); (C.C.L.); (L.B.S.); (I.V.F.d.S.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
| | - Elcimar de S. Barros
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Alexandre de A. Maciel
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Elenilze F. B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil
- Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá 68900-070, AP, Brazil
| | - Kauê S. da Costa
- Computational Simulation Laboratory, Institute of Biodiversity, Federal University of Western Pará, Vera Paz Street, w/n Salé, Santarém 68040-255, PA, Brazil;
| | - José M. Espejo-Román
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.R.)
| | - Joaquín M. C. Rosa
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (J.M.E.-R.); (J.M.C.R.)
| | - Njogu M. Kimani
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya;
| | - Cleydson B. R. Santos
- Biodiversity and Biotechnology Network of the Legal Amazon, Biotechnology Department, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (V.H.d.S.S.); (C.C.L.); (L.B.S.); (I.V.F.d.S.)
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68903-419, AP, Brazil; (E.d.S.B.); (A.d.A.M.); (E.F.B.F.)
- Graduate Program of Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| |
Collapse
|
2
|
Bastos RS, de Aguiar CPO, Cruz JN, Ramos RS, Kimani NM, de Souza JSN, Chaves MH, de Freitas HF, Pita SSR, dos Santos CBR. Rational Approach toward COVID-19's Main Protease Inhibitors: A Hierarchical Biochemoinformatics Analysis. Int J Mol Sci 2024; 25:6715. [PMID: 38928422 PMCID: PMC11204165 DOI: 10.3390/ijms25126715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the potential of selected compounds as inhibitors of SARS-CoV-2 Mpro through pharmacokinetic and toxicological analyses, molecular docking, and molecular dynamics simulations. In silico molecular docking simulations revealed promising ligands with favorable binding affinities for Mpro, ranging from -6.2 to -9.5 kcal/mol. Moreover, molecular dynamics simulations demonstrated the stability of protein-ligand complexes over 200 ns, maintaining protein secondary structures. MM-PBSA analysis revealed favorable interactions between ligands and Mpro, with negative binding energy values. Hydrogen bond formation capacity during molecular dynamics was confirmed, indicating consistent interactions with Mpro catalytic residues. Based on these findings, selected ligands show promise for future studies in developing COVID-19 treatments.
Collapse
Affiliation(s)
- Ruan S. Bastos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Christiane P. O. de Aguiar
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Ryan S. Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya
| | - João S. N. de Souza
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Mariana H. Chaves
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Humberto F. de Freitas
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Federal University of Bahia, Av. Barão de Jeremoabo, 147, Pharmacy College, Ondina, Salvador 40170-115, BA, Brazil; (H.F.d.F.); (S.S.R.P.)
| | - Samuel S. R. Pita
- Laboratory of Bioinformatics and Molecular Modeling (LaBiMM), Federal University of Bahia, Av. Barão de Jeremoabo, 147, Pharmacy College, Ondina, Salvador 40170-115, BA, Brazil; (H.F.d.F.); (S.S.R.P.)
| | - Cleydson B. R. dos Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| |
Collapse
|
3
|
Naji SA, Sağlik BN, Agamennone M, Evren AE, Gundogdu-Karaburun N, Karaburun AÇ. Design and Evaluation of Synthesized Pyrrole Derivatives as Dual COX-1 and COX-2 Inhibitors Using FB-QSAR Approach. ACS OMEGA 2023; 8:48884-48903. [PMID: 38162789 PMCID: PMC10753557 DOI: 10.1021/acsomega.3c06344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
This study delves into the intricate dynamics of the inflammatory response, unraveling the pivotal role played by cyclooxygenase (COX) enzymes, particularly COX-1 and COX-2 subtypes. Motivated by the pursuit of advancing scientific knowledge, our contribution to this field is marked by the design and synthesis of novel pyrrole derivatives. Crafted as potential inhibitors of COX-1 and COX-2 enzymes, our goal was to unearth molecules with heightened efficacy in modulating enzyme activity. A meticulous exploration of a synthesis library, housing around 3000 compounds, expedited the identification of potent candidates. Employing advanced docking studies and field-based Quantitative Structure-Activity Relationship (FB-QSAR) analyses enriched our understanding of the complex interactions between synthesized compounds and COX enzymes. Guided by FB-QSAR insights, our synthesis path led to the identification of compounds 4g, 4h, 4l, and 4k as potent COX-2 inhibitors, surpassing COX-1 efficacy. Conversely, compounds 5b and 5e exhibited heightened inhibitory activity against COX-1 relative to COX-2. The utilization of pyrrole derivatives as COX enzyme inhibitors holds promise for groundbreaking advancements in the domain of anti-inflammatory therapeutics, presenting avenues for innovative pharmaceutical exploration.
Collapse
Affiliation(s)
- Shoruq Ahmed Naji
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Begüm Nurpelin Sağlik
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Mariangela Agamennone
- Department
of Pharmacy, University “G. d’Annunzio”
of Chieti-Pescara, Via
dei Vestini 31, 66100 Chieti, Italy
| | - Asaf Evrim Evren
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
- Vocational
School of Health Services, Pharmacy Services, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| | - Nalan Gundogdu-Karaburun
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| | - Ahmet Çagrı Karaburun
- Faculty
of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, 26470 Eskişehir, Turkey
| |
Collapse
|
4
|
Oliveira LPS, Lima LR, Silva LB, Cruz JN, Ramos RS, Lima LS, Cardoso FMN, Silva AV, Rodrigues DP, Rodrigues GS, Proietti-Junior AA, dos Santos GB, Campos JM, Santos CBR. Hierarchical Virtual Screening of Potential New Antibiotics from Polyoxygenated Dibenzofurans against Staphylococcus aureus Strains. Pharmaceuticals (Basel) 2023; 16:1430. [PMID: 37895901 PMCID: PMC10610096 DOI: 10.3390/ph16101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a microorganism with high morbidity and mortality due to antibiotic-resistant strains, making the search for new therapeutic options urgent. In this context, computational drug design can facilitate the drug discovery process, optimizing time and resources. In this work, computational methods involving ligand- and structure-based virtual screening were employed to identify potential antibacterial agents against the S. aureus MRSA and VRSA strains. To achieve this goal, tetrahydroxybenzofuran, a promising antibacterial agent according to in vitro tests described in the literature, was adopted as the pivotal molecule and derivative molecules were considered to generate a pharmacophore model, which was used to perform virtual screening on the Pharmit platform. Through this result, twenty-four molecules were selected from the MolPort® database. Using the Tanimoto Index on the BindingDB web server, it was possible to select eighteen molecules with greater structural similarity in relation to commercial antibiotics (methicillin and oxacillin). Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the eighteen most similar molecules, showed that only three exhibited desired properties (LB255, LB320 and LB415). In the molecular docking study, the promising molecules LB255, LB320 and LB415 showed significant values in both molecular targets. LB320 presented better binding affinity to MRSA (-8.18 kcal/mol) and VRSA (-8.01 kcal/mol) targets. Through PASS web server, the three molecules, specially LB320, showed potential for antibacterial activity. Synthetic accessibility (SA) analysis performed on AMBIT and SwissADME web servers showed that LB255 and LB415 can be considered difficult to synthesize and LB320 is considered easy. In conclusion, the results suggest that these ligands, particularly LB320, may bind strongly to the studied targets and may have appropriate ADME/Tox properties in experimental studies.
Collapse
Affiliation(s)
- Lana P. S. Oliveira
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Lúcio R. Lima
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal Univesity of Pará, Belém 66075-110, Brazil
| | - Luciane B. Silva
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal Univesity of Pará, Belém 66075-110, Brazil
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Ryan S. Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Luciana S. Lima
- Special Laboratory of Applied Microbiology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil;
| | - Francy M. N. Cardoso
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Special Laboratory of Applied Microbiology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil;
| | - Aderaldo V. Silva
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
| | - Dália P. Rodrigues
- Laboratory of Bacterial Enteric Pathogens, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21045-900, Brazil;
| | - Gabriela S. Rodrigues
- Graduate Program in Health Sciences, Institute of Collective Health, Federal University of Western Pará, Santarém 68270-000, Brazil; (G.S.R.); (G.B.d.S.)
| | - Aldo A. Proietti-Junior
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Special Laboratory of Applied Microbiology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil;
| | - Gabriela B. dos Santos
- Graduate Program in Health Sciences, Institute of Collective Health, Federal University of Western Pará, Santarém 68270-000, Brazil; (G.S.R.); (G.B.d.S.)
| | - Joaquín M. Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Institute of Biosanitary Research ibs. GRANADA, University of Granada, 18071 Granada, Spain;
| | - Cleydson B. R. Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, Brazil; (L.P.S.O.); (R.S.R.); (F.M.N.C.); (A.V.S.); (A.A.P.-J.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil; (L.R.L.); (L.B.S.); (J.N.C.)
- Graduate Program in Network in Pharmaceutical Innovation, Federal University of Amapá, Macapá 68902-280, Brazil
| |
Collapse
|
5
|
Bursch KL, Olp MD, Smith BC. Analysis of continuous enzyme kinetic data using ICEKAT. Methods Enzymol 2023; 690:109-129. [PMID: 37858527 PMCID: PMC10691744 DOI: 10.1016/bs.mie.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
ICEKAT (Interactive Continuous Enzyme Analysis Tool) is an interactive web-based program for calculating initial rates and kinetic parameters (e.g., Vmax, kcat, KM, EC50, IC50) from continuous enzyme kinetic assay data that satisfy Michaelis-Menten and steady-state kinetic assumptions. ICEKAT is valuable in educational and research settings to consistently and accurately calculate initial rates and kinetic parameters, increasing assay veracity and reproducibility. Provided freely online to the scientific community, ICEKAT has been cited in at least 26 publications, and the initial journal article has been accessed nearly 9000 times since its debut in 2020 (Olp et al., 2020). Here, we provide in-depth instructions for software use, offer vital considerations for data analysis, and highlight updated software features for new and existing users. Through ICEKAT, we aim for the analysis of data from continuous enzyme kinetic studies worldwide to become more rapid, reliable, and repeatable. ICEKAT remains free of charge and available to all scientists at https://icekat.herokuapp.com/icekat; the source code for local use is found at https://github.com/SmithLabMCW/icekat.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States
| | - Michael D Olp
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States; Program in Chemical Biology, Medical College of Wisconsin, Watertown Plank Road, Milwaukee, WI, United States.
| |
Collapse
|
6
|
Bastos RS, de Lima LR, Neto MFA, Yousaf N, Cruz JN, Campos JM, Kimani NM, Ramos RS, Santos CBR. Design and Identification of Inhibitors for the Spike-ACE2 Target of SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24108814. [PMID: 37240165 DOI: 10.3390/ijms24108814] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 05/28/2023] Open
Abstract
When an epidemic started in the Chinese city of Wuhan in December 2019, coronavirus was identified as the cause. Infection by the virus occurs through the interaction of viral S protein with the hosts' angiotensin-converting enzyme 2. By leveraging resources such as the DrugBank database and bioinformatics techniques, ligands with potential activity against the SARS-CoV-2 spike protein were designed and identified in this investigation. The FTMap server and the Molegro software were used to determine the active site of the Spike-ACE2 protein's crystal structure. Virtual screening was performed using a pharmacophore model obtained from antiparasitic drugs, obtaining 2000 molecules from molport®. The ADME/Tox profiles were used to identify the most promising compounds with desirable drug characteristics. The binding affinity investigation was then conducted with selected candidates. A molecular docking study showed five structures with better binding affinity than hydroxychloroquine. Ligand_003 showed a binding affinity of -8.645 kcal·mol-1, which was considered an optimal value for the study. The values presented by ligand_033, ligand_013, ligand_044, and ligand_080 meet the profile of novel drugs. To choose compounds with favorable potential for synthesis, synthetic accessibility studies and similarity analyses were carried out. Molecular dynamics and theoretical IC50 values (ranging from 0.459 to 2.371 µM) demonstrate that these candidates are promising for further tests. Chemical descriptors showed that the candidates had strong molecule stability. Theoretical analyses here show that these molecules have potential as SARS-CoV-2 antivirals and therefore warrant further investigation.
Collapse
Affiliation(s)
- Ruan S Bastos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belem 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Lúcio R de Lima
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belem 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Moysés F A Neto
- Laboratory of Molecular Modeling, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan
| | - Jorddy N Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Joaquín M Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu 6-60100, Kenya
| | - Ryan S Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| | - Cleydson B R Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belem 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapa 68903-419, AP, Brazil
| |
Collapse
|
7
|
Galantamine Based Novel Acetylcholinesterase Enzyme Inhibitors: A Molecular Modeling Design Approach. Molecules 2023; 28:molecules28031035. [PMID: 36770702 PMCID: PMC9919016 DOI: 10.3390/molecules28031035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Acetylcholinesterase (AChE) enzymes play an essential role in the development of Alzheimer's disease (AD). Its excessive activity causes several neuronal problems, particularly psychopathies and neuronal cell death. A bioactive pose on the hAChE B site of the human acetylcholinesterase (hAChE) enzyme employed in this investigation, which was obtained from the Protein Data Bank (PDB ID 4EY6), allowed for the prediction of the binding affinity and free binding energy between the protein and the ligand. Virtual screening was performed to obtain structures similar to Galantamine (GNT) with potential hAChE activity. The top 200 hit compounds were prioritized through the use of filters in ZincPharmer, with special features related to the pharmacophore. Critical analyses were carried out, such as hierarchical clustering analysis (HCA), ADME/Tox predictions, molecular docking, molecular simulation studies, synthetic accessibility (SA), lipophilicity, water solubility, and hot spots to confirm the stable binding of the two promising molecules (ZINC16951574-LMQC2, and ZINC08342556-LMQC5). The metabolism prediction, with metabolites M3-2, which is formed by Glutathionation reaction (Phase II), M1-2, and M2-2 formed from the reaction of S-oxidation and Aliphatic hydroxylation (Phase I), were both reactive but with no side effects. Theoretical synthetic routes and prediction of synthetic accessibility for the most promising compounds are also proposed. In conclusion, this study shows that in silico modeling can be used to create new drug candidate inhibitors for hAChE. The compounds ZINC16951574-LMQC2, and ZINC08342556-LMQC5 are particularly promising for oral administration because they have a favorable drug-likeness profile, excellent lipid solubility, high bioavailability, and adequate pharmacokinetics.
Collapse
|
8
|
Onyango H, Odhiambo P, Angwenyi D, Okoth P. In Silico Identification of New Anti-SARS-CoV-2 Main Protease (M pro) Molecules with Pharmacokinetic Properties from Natural Sources Using Molecular Dynamics (MD) Simulations and Hierarchical Virtual Screening. J Trop Med 2022; 2022:3697498. [PMID: 36263438 PMCID: PMC9576439 DOI: 10.1155/2022/3697498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Infectious agents such as SARS-CoV, MERS-CoV, and SARS-CoV-2 have emerged in recent years causing epidemics with high mortality rates. The quick development of novel therapeutic compounds is required in the fight against such pathogenic agents. Unfortunately, the traditional drug development methods are time-consuming and expensive. In this study, computational algorithms were utilized for virtual screening of a library of natural compounds in the ZINC database for their affinity towards SARS-CoV-2 Mpro. Compounds such as cinanserin, nelfinavir, baicalin, baicalein, candesartan cilexetil, chloroquine, dipyridamole, and hydroxychloroquine have the ability to prevent SARS-CoV-2 Mpro from facilitating COVID 19 infection; thus, they treat COVID 19. However, these drugs majorly act to reduce the symptoms of the disease. No anti-viral drug against COVID 19 virus infection has been discovered and approved. Therefore, this study sought to explore natural inhibitors of SARS-CoV-2 Mpro to develop a pharmacophore model for virtual screening of natural compounds in the ZINC database as potential candidates for SARS-CoV-2 Mpro inhibitors and as therapeutic molecules against COVID 19. This study undertook in silico methods to identify the best anti-viral candidates targeting SAR-CoV-2 Mpro from natural sources in the ZINC database. Initially, reported anti-SARS-CoV-2 Mpro molecules were integrated into designing a pharmacophore model utilizing PharmaGist. Later, the pharmacophore model was loaded into ZINCPHARMER and screened against the ZINC database to identify new probable drug candidates. The root means square deviation (RMSD) values of the potential drug candidates informed the selection of some of them, which were docked with SARS-CoV-2 Mpro to comprehend their interactions. From the molecular docking results, the top four candidates (ZINC000254823011, ZINC000072307130, ZINC000013627512, and ZINC000009418994) against SARS-CoV-2 Mpro, with binding energies ranging from -8.2 kcal/mol to -8.6 kcal/mol, were examined for their oral bioavailability and other pharmacokinetic properties. Consequently, ZINC000072307130 emerged as the only orally bioavailable drug candidate with desirable pharmacokinetic properties. This candidate drug was used to perform MD simulations, and the outcomes revealed that ZINC000072307130 formed a stable complex with the viral main protease. Consequently, ZINC000072307130 emerges as a potential anti-SARS-CoV-2 Mpro inhibitor for the production of new COVID 19 drugs.
Collapse
Affiliation(s)
- Harrison Onyango
- Department of Biological Sciences (Molecular Biology, Computational Biology and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P. O BOX 190, Kakamega 50100, Kenya
| | - Patrick Odhiambo
- Department of Biological Sciences (Molecular Biology, Computational Biology and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P. O BOX 190, Kakamega 50100, Kenya
| | - David Angwenyi
- Department of Mathematics, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P. O BOX 190, Kakamega 50100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences (Molecular Biology, Computational Biology and Bioinformatics Section), School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P. O BOX 190, Kakamega 50100, Kenya
| |
Collapse
|
9
|
Lima LR, Bastos RS, Ferreira EFB, Leão RP, Araújo PHF, Pita SSDR, De Freitas HF, Espejo-Román JM, Dos Santos ELVS, Ramos RDS, Macêdo WJC, Santos CBR. Identification of Potential New Aedes aegypti Juvenile Hormone Inhibitors from N-Acyl Piperidine Derivatives: A Bioinformatics Approach. Int J Mol Sci 2022; 23:ijms23179927. [PMID: 36077329 PMCID: PMC9456062 DOI: 10.3390/ijms23179927] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Aedes aegypti mosquitoes transmit several human pathogens that cause millions of deaths worldwide, mainly in Latin America. The indiscriminate use of insecticides has resulted in the development of species resistance to some such compounds. Piperidine, a natural alkaloid isolated from Piper nigrum, has been used as a hit compound due to its larvicidal activity against Aedes aegypti. In the present study, piperidine derivatives were studied through in silico methods: pharmacophoric evaluation (PharmaGist), pharmacophoric virtual screening (Pharmit), ADME/Tox prediction (Preadmet/Derek 10.0®), docking calculations (AutoDock 4.2) and molecular dynamics (MD) simulation on GROMACS-5.1.4. MP-416 and MP-073 molecules exhibiting ΔG binding (MMPBSA −265.95 ± 1.32 kJ/mol and −124.412 ± 1.08 kJ/mol, respectively) and comparable to holo (ΔG binding = −216.21 ± 0.97) and pyriproxyfen (a well-known larvicidal, ΔG binding= −435.95 ± 2.06 kJ/mol). Considering future in vivo assays, we elaborated the theoretical synthetic route and made predictions of the synthetic accessibility (SA) (SwissADME), lipophilicity and water solubility (SwissADME) of the promising compounds identified in the present study. Our in silico results show that MP-416 and MP-073 molecules could be potent insecticides against the Aedes aegypti mosquitoes.
Collapse
Affiliation(s)
- Lúcio R. Lima
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Ruan S. Bastos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Elenilze F. B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
- Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá 68900-070, AP, Brazil
| | - Rozires P. Leão
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Pedro H. F. Araújo
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Samuel S. da R. Pita
- Bioinformatics and Molecular Modeling Laboratory, Pharmacy College, Federal University of Bahia, Av. Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil
| | - Humberto F. De Freitas
- Bioinformatics and Molecular Modeling Laboratory, Pharmacy College, Federal University of Bahia, Av. Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil
- Health Department, State University of Feira de Santana, Feira de Santana 44036-900, BA, Brazil
| | - José M. Espejo-Román
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Edla L. V. S. Dos Santos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Ryan da S. Ramos
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
| | - Williams J. C. Macêdo
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
- Laboratory of Molecular Modeling and Simulation System, Federal Rural University of Amazônia, Rua João Pessoa, 121, Capanema 68700-030, PA, Brazil
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil
- Correspondence:
| |
Collapse
|
10
|
dos Santos IV, Borges RS, Silva GM, de Lima LR, Bastos RS, Ramos RS, Silva LB, da Silva CHTP, dos Santos CBR. Hierarchical Virtual Screening Based on Rocaglamide Derivatives to Discover New Potential Anti-Skin Cancer Agents. Front Mol Biosci 2022; 9:836572. [PMID: 35720115 PMCID: PMC9201829 DOI: 10.3389/fmolb.2022.836572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Skin Cancer (SC) is among the most common type of cancers worldwide. The search for SC therapeutics using molecular modeling strategies as well as considering natural plant-derived products seems to be a promising strategy. The phytochemical Rocaglamide A (Roc-A) and its derivatives rise as an interesting set of reference compounds due to their in vitro cytotoxic activity with SC cell lines. In view of this, we performed a hierarchical virtual screening study considering Roc-A and its derivatives, with the aim to find new chemical entities with potential activity against SC. For this, we selected 15 molecules (Roc-A and 14 derivatives) and initially used them in docking studies to predict their interactions with Checkpoint kinase 1 (Chk1) as a target for SC. This allowed us to compile and use them as a training set to build robust pharmacophore models, validated by Pearson’s correlation (p) values and hierarchical cluster analysis (HCA), subsequentially submitted to prospective virtual screening using the Molport® database. Outputted compounds were then selected considering their similarities to Roc-A, followed by analyses of predicted toxicity and pharmacokinetic properties as well as of consensus molecular docking using three software. 10 promising compounds were selected and analyzed in terms of their properties and structural features and, also, considering their previous reports in literature. In this way, the 10 promising virtual hits found in this work may represent potential anti-SC agents and further investigations concerning their biological tests shall be conducted.
Collapse
Affiliation(s)
- Igor V.F. dos Santos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil
| | - Rosivaldo S. Borges
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Guilherme M. Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lúcio R. de Lima
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Ruan S. Bastos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Ryan S. Ramos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil
| | - Luciane B. Silva
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
| | - Carlos H. T. P. da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cleydson B. R. dos Santos
- Modeling and Computational Chemistry Laboratory, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá, Brazil
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Federal University of Pará, Belém, Brazil
- *Correspondence: Cleydson B. R. dos Santos,
| |
Collapse
|
11
|
Ramos RS, Borges RS, de Souza JSN, Araujo IF, Chaves MH, Santos CBR. Identification of Potential Antiviral Inhibitors from Hydroxychloroquine and 1,2,4,5-Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS-CoV-2. Int J Mol Sci 2022; 23:1781. [PMID: 35163703 PMCID: PMC8836247 DOI: 10.3390/ijms23031781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 12/27/2022] Open
Abstract
This study aimed to identify potential inhibitors and investigate the mechanism of action on SARS-CoV-2 ACE2 receptors using a molecular modeling study and theoretical determination of biological activity. Hydroxychloroquine was used as a pivot structure and antimalarial analogues of 1,2,4,5 tetraoxanes were used for the construction and evaluation of pharmacophoric models. The pharmacophore-based virtual screening was performed on the Molport® database (~7.9 million compounds) and obtained 313 structures. Additionally, a pharmacokinetic study was developed, obtaining 174 structures with 99% confidence for human intestinal absorption and penetration into the blood-brain barrier (BBB); posteriorly, a study of toxicological properties was realized. Toxicological predictions showed that the selected molecules do not present a risk of hepatotoxicity, carcinogenicity, mutagenicity, and skin irritation. Only 54 structures were selected for molecular docking studies, and five structures showed binding affinity (ΔG) values satisfactory for ACE2 receptors (PDB 6M0J), in which the molecule MolPort-007-913-111 had the best ΔG value of -8.540 Kcal/mol, followed by MolPort-002-693-933 with ΔG = -8.440 Kcal/mol. Theoretical determination of biological activity was realized for 54 structures, and five molecules showed potential protease inhibitors. Additionally, we investigated the Mpro receptor (6M0K) for the five structures via molecular docking, and we confirmed the possible interaction with the target. In parallel, we selected the TopsHits 9 with antiviral potential that evaluated synthetic accessibility for future synthesis studies and in vivo and in vitro tests.
Collapse
Affiliation(s)
- Ryan S. Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (R.S.B.); (I.F.A.)
| | - Rosivaldo S. Borges
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (R.S.B.); (I.F.A.)
- Graduate Program on Medicinal Chemistry and Molecular Modeling, Institute of Health Science, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João S. N. de Souza
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (J.S.N.d.S.); (M.H.C.)
| | - Inana F. Araujo
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (R.S.B.); (I.F.A.)
- Binational Campus, Federal University of Amapá, Oiapoque 68980-000, AP, Brazil
| | - Mariana H. Chaves
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (J.S.N.d.S.); (M.H.C.)
| | - Cleydson B. R. Santos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá 68903-419, AP, Brazil
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil; (R.S.B.); (I.F.A.)
- Chemistry Department, Federal University of Piauí, Teresina 64049-550, PI, Brazil; (J.S.N.d.S.); (M.H.C.)
| |
Collapse
|
12
|
Cruz JV, Giuliatti S, Alves LB, Silva RC, Ferreira EFB, Kimani NM, Silva CHTP, Souza JSND, Espejo-Román JM, Santos CBR. Identification of novel potential cyclooxygenase-2 inhibitors using ligand- and structure-based virtual screening approaches. J Biomol Struct Dyn 2021; 40:5386-5408. [PMID: 33427075 DOI: 10.1080/07391102.2020.1871413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cyclooxygenase 2 (COX-2) is a well-established target for the design of anti-inflammatory intermediates. Celecoxib was selected as a template molecule to perform ligand-based virtual screening, i.e. to search for structures with similarity in shape and electrostatic potential, with a gradual increase in accuracy through the combined fitting of several steps using eight commercial databases. The molecules ZINC408709 and ZINC2090319 reproduced values within the limits established in an initial study of absorption and distribution in the body. No alert was fired for possible toxic groups when these molecules were subjected to toxicity prediction. Molecular docking results with these compounds showed a higher binding affinity in comparison to rofecoxib for the COX-2 target. Additionally, ZINC408709 and ZINC2090319 were predicted to be potentially biologically active. In in silico prediction of endocrine disruption potential, it was established that the molecule ZINC2090319 binds strongly to the target related to cardiovascular risk in a desirable way as a non-steroidal antagonist and ZINC408709 binds strongly to the target that is associated with the treatment of inflammatory pathologies and similar to celecoxib. Metabolites generated from these compounds are less likely to have side effects. Simulations were used to evaluate the interaction of compounds with COX-1 and COX-2 during 200 ns. Despite the differences, ZINC408709 molecule showed better stability for COX-2 during molecular dynamics simulation. In the calculations of free energy MM/PBSA, the molecule ZINC408709 ΔGbind value has a higher affinity to celecoxib and rofecoxib COX-2. This demonstrates that the selected substances can be considered as promising COX-2 inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Josiane V Cruz
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| | - Silvana Giuliatti
- Bioinformatics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Levy B Alves
- Bioinformatics Group, Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raí C Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Elenilze F B Ferreira
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Organic Chemistry and Biochemistry, University of the State of Amapá, Macapá, Brazil
| | - Njogu M Kimani
- Department of Physical Sciences, University of Embu, Embu, Kenya
| | - Carlos H T P Silva
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil.,Computational Laboratory of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João S N de Souza
- Department of Chemistry, Federal University of Piaui, Teresina, Brazil
| | - José M Espejo-Román
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Biosanitary Institute of Granada (Ibs.GRANADA), University of Granada, Granada, Spain
| | - Cleydson B R Santos
- Graduate Program in Pharmaceutical Innovation, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil.,Laboratory of Modeling and Computational Chemistry, Department of Biological Sciences and Health, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
13
|
Identification of Potential COX-2 Inhibitors for the Treatment of Inflammatory Diseases Using Molecular Modeling Approaches. Molecules 2020; 25:molecules25184183. [PMID: 32932669 PMCID: PMC7570943 DOI: 10.3390/molecules25184183] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs are inhibitors of cyclooxygenase-2 (COX-2) that were developed in order to avoid the side effects of non-selective inhibitors of COX-1. Thus, the present study aims to identify new selective chemical entities for the COX-2 enzyme via molecular modeling approaches. The best pharmacophore model was used to identify compounds within the ZINC database. The molecular properties were determined and selected with Pearson’s correlation for the construction of quantitative structure–activity relationship (QSAR) models to predict the biological activities of the compounds obtained with virtual screening. The pharmacokinetic/toxicological profiles of the compounds were determined, as well as the binding modes through molecular docking compared to commercial compounds (rofecoxib and celecoxib). The QSAR analysis showed a fit with R = 0.9617, R2 = 0.9250, standard error of estimate (SEE) = 0.2238, and F = 46.2739, with the tetra-parametric regression model. After the analysis, only three promising inhibitors were selected, Z-964, Z-627, and Z-814, with their predicted pIC50 (−log IC50) values, Z-814 = 7.9484, Z-627 = 9.3458, and Z-964 = 9.5272. All candidates inhibitors complied with Lipinski’s rule of five, which predicts a good oral availability and can be used in in vitro and in vivo tests in the zebrafish model in order to confirm the obtained in silico data.
Collapse
|
14
|
Leão RP, Cruz JV, da Costa GV, Cruz JN, Ferreira EFB, Silva RC, de Lima LR, Borges RS, dos Santos GB, Santos CBR. Identification of New Rofecoxib-Based Cyclooxygenase-2 Inhibitors: A Bioinformatics Approach. Pharmaceuticals (Basel) 2020; 13:E209. [PMID: 32858871 PMCID: PMC7559105 DOI: 10.3390/ph13090209] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
The cyclooxygenase-2 receptor is a therapeutic target for planning potential drugs with anti-inflammatory activity. The selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib was selected as a pivot molecule to perform virtual ligand-based screening from six commercial databases. We performed the search for similarly shaped Rapid Overlay of Chemical Structures (ROCS) and electrostatic (EON) compounds. After, we used pharmacokinetic and toxicological parameters to determine the best potential compounds, obtained through the softwares QikProp and Derek, respectively. Then, the compounds proceeded to the molecular anchorage study, which showed promising results of binding affinity with the hCOX-2 receptor: LMQC72 (∆G = -11.0 kcal/mol), LMQC36 (∆G = -10.6 kcal/mol), and LMQC50 (∆G = -10.2 kcal/mol). LMQC72 and LMQC36 showed higher binding affinity compared to rofecoxib (∆G = -10.4 kcal/mol). Finally, molecular dynamics (MD) simulations were used to evaluate the interaction of the compounds with the target hCOX-2 during 150 ns. In all MD simulation trajectories, the ligands remained interacting with the protein until the end of the simulation. The compounds were also complexing with hCOX-2 favorably. The compounds obtained the following affinity energy values: rofecoxib: ΔGbind = -45.31 kcal/mol; LMQC72: ΔGbind = -38.58 kcal/mol; LMQC36: ΔGbind = -36.10 kcal/mol; and LMQC50: ΔGbind = -39.40 kcal/mol. The selected LMQC72, LMQC50, and LMQC36 structures showed satisfactory pharmacokinetic results related to absorption and distribution. The toxicological predictions of these compounds did not display alerts for possible toxic groups and lower risk of cardiotoxicity compared to rofecoxib. Therefore, future in vitro and in vivo studies are needed to confirm the anti-inflammatory potential of the compounds selected here with bioinformatics approaches based on rofecoxib ligand.
Collapse
Affiliation(s)
- Rozires P. Leão
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Josiane V. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Glauber V. da Costa
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Jorddy N. Cruz
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Elenilze F. B. Ferreira
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
- Laboratory of Organic Chemistry and Biochemistry, University of State of Amapá, Macapá 68900-070, AP, Brazil
| | - Raí C. Silva
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14090-901, SP, Brazil
| | - Lúcio R. de Lima
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| | - Rosivaldo S. Borges
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
| | - Gabriela B. dos Santos
- Institute of Collective Health, Federal University of Western Pará, Santarém 68040-255, PA, Brazil;
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modeling, Health Science Institute, Federal University of Pará, Belém 66075-110, PA, Brazil; (R.P.L.); (R.C.S.); (L.R.d.L.); (R.S.B.)
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil.; (J.V.C.); (G.V.d.C.); (J.N.C.); (E.F.B.F.)
| |
Collapse
|
15
|
Identification of Novel Chemical Entities for Adenosine Receptor Type 2A Using Molecular Modeling Approaches. Molecules 2020; 25:molecules25051245. [PMID: 32164183 PMCID: PMC7179438 DOI: 10.3390/molecules25051245] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Adenosine Receptor Type 2A (A2AAR) plays a role in important processes, such as anti-inflammatory ones. In this way, the present work aimed to search for compounds by pharmacophore-based virtual screening. The pharmacokinetic/toxicological profiles of the compounds, as well as a robust QSAR, predicted the binding modes via molecular docking. Finally, we used molecular dynamics to investigate the stability of interactions from ligand-A2AAR. For the search for A2AAR agonists, the UK-432097 and a set of 20 compounds available in the BindingDB database were studied. These compounds were used to generate pharmacophore models. Molecular properties were used for construction of the QSAR model by multiple linear regression for the prediction of biological activity. The best pharmacophore model was used by searching for commercial compounds in databases and the resulting compounds from the pharmacophore-based virtual screening were applied to the QSAR. Two compounds had promising activity due to their satisfactory pharmacokinetic/toxicological profiles and predictions via QSAR (Diverset 10002403 pEC50 = 7.54407; ZINC04257548 pEC50 = 7.38310). Moreover, they had satisfactory docking and molecular dynamics results compared to those obtained for Regadenoson (Lexiscan®), used as the positive control. These compounds can be used in biological assays (in vitro and in vivo) in order to confirm the potential activity agonist to A2AAR.
Collapse
|
16
|
Mohammad T, Siddiqui S, Shamsi A, Alajmi MF, Hussain A, Islam A, Ahmad F, Hassan MI. Virtual Screening Approach to Identify High-Affinity Inhibitors of Serum and Glucocorticoid-Regulated Kinase 1 among Bioactive Natural Products: Combined Molecular Docking and Simulation Studies. Molecules 2020; 25:E823. [PMID: 32070031 PMCID: PMC7070812 DOI: 10.3390/molecules25040823] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a serine/threonine kinase that works under acute transcriptional control by several stimuli, including serum and glucocorticoids. It plays a significant role in the cancer progression and metastasis, as it regulates inflammation, apoptosis, hormone release, neuro-excitability, and cell proliferation. SGK1 has recently been considered as a potential drug target for cancer, diabetes, and neurodegenerative diseases. In the present study, we have performed structure-based virtual high-throughput screening of natural compounds from the ZINC database to find potential inhibitors of SGK1. Initially, hits were selected based on their physicochemical, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and other drug-like properties. Afterwards, PAINS filter, binding affinities estimation, and interaction analysis were performed to find safe and effective hits. We found four compounds bearing appreciable binding affinity and specificity towards the binding pocket of SGK1. The docking results were complemented by all-atom molecular dynamics simulation for 100 ns, followed by MM/PBSA, and principal component analysis to investigate the conformational changes, stability, and interaction mechanism of SGK1 in-complex with the selected compound ZINC00319000. Molecular dynamics simulation results suggested that the binding of ZINC00319000 stabilizes the SGK1 structure, and it leads to fewer conformational changes. In conclusion, the identified compound ZINC00319000 might be further exploited as a scaffold to develop promising inhibitors of SGK1 for the therapeutic management of associated diseases, including cancer.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Shiza Siddiqui
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (A.H.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (T.M.); (A.S.); (A.I.); (F.A.)
| |
Collapse
|