1
|
Ahmad G, Khan SU, Mir SA, Iqbal MJ, Pottoo FH, Dhiman N, Malik F, Ali A. Myrica esculenta Buch.-Ham. (ex D. Don): A Review on its Phytochemistry, Pharmacology and Nutritional Potential. Comb Chem High Throughput Screen 2022; 25:2372-2386. [PMID: 36330658 DOI: 10.2174/1386207325666220428105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
Myrica esculenta is an important ethnomedicinal plant used in the traditional system of medicine and as an important nutraceutical. Several studies on the plant justify its use in alternative systems of medicine and establish a scientific rationale for its possible therapeutic application. The plant contains a range of biologically active classes of compounds, particularly diarylheptanoids, flavonoids, terpenes, tannins, and glycosides. The nutraceutical potential of the plant can be particularly attributed to its fruit, and several studies have demonstrated the presence of carbohydrates, proteins, fats, fiber content, and minerals like sodium, potassium, calcium, manganese, iron, copper, and zinc, in it. The current review aims to provide complete insight into the phytochemistry, pharmacological potential, and nutritional potential of the plant, which would not only serve as a comprehensive source of information but also will highlight the scope of isolation and evaluation of these molecules for various disease conditions.
Collapse
Affiliation(s)
- Gazanfar Ahmad
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Sameer Ullah Khan
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sameer Ahmad Mir
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Mir Javid Iqbal
- Department of Pharmacy, Northeastern University, 360 Huntington Avenue-140TF, Boston, Massachusetts MA, 02115, USA
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Neerupma Dhiman
- Amity Institute of Pharmacy, Amity University, Noida, UP 201301 India
| | - Fayaz Malik
- Cancer Pharmacology Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K 190005, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Asif Ali
- Natural Product Laboratory, CSIR-IIIM, Jammu, J&K 180001, India
| |
Collapse
|
2
|
UPLC-Q-TOF-MS/MS Analysis of Phenolic Compounds from the Fruit of Cephalostachyum fuchsianum Gamble and Their Antioxidant and Cytoprotective Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123767. [PMID: 35744892 PMCID: PMC9227481 DOI: 10.3390/molecules27123767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023]
Abstract
Bamboo is a widely distributed graminaceous plant in China and is a potential source of bioactive substances. Incidentally, bamboo’s fruit is rich in phytochemicals such as polyphenols and flavonoids, which are significant to human health. In this study, we identified the phenolic compounds of the fruit and investigated the antioxidant activities of Cephalostachyum fuchsianum Gamble (CFG) fruit polyphenols with in vitro and in vivo tests for the first time. UPLC–Q–TOF–MS/MS analysis results showed that the fruit contained 43 phenolic compounds, including 7 hydroxybenzoic acids, 12 flavonoids, 7 coumarins, 10 hydroxycinnamic acids, 1 terpenoid, and 5 lignans. The TPC of SP extracts was higher than that of IBPs extracts in FP and FF. The SP extracts in FP showed better antioxidant activities in vitro compared to those in FF. In addition, polyphenols from CFG fruits protected against H2O2-induced oxidative damage in HepG2 cells, and the protective effect of polyphenols in FP was superior to that in FF. The analysis results showed that CFG fruit has great potential in exploiting natural chemical substances, which can provide valuable pieces of information for the further development and utilization of CFG.
Collapse
|
3
|
Zhang S, Yu Z, Sun L, Ren H, Zheng X, Liang S, Qi X. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry. PeerJ 2022; 10:e13070. [PMID: 35265403 PMCID: PMC8900607 DOI: 10.7717/peerj.13070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023] Open
Abstract
Chinese bayberry (CB) is among the most popular and valuable fruits in China owing to its attractive color and unique sweet/sour taste. Recent studies have highlighted the nutritional value and health-related benefits of CB. CB has special biological characteristics of evergreen, special aroma, dioecious, nodulation, nitrogen fixation. Moreover, the fruits, leaves, and bark of CB plants harbor a number of bioactive compounds including proanthocyanidins, flavonoids, vitamin C, phenolic acids, and anthocyanins that have been linked to the anti-cancer, anti-oxidant, anti-inflammatory, anti-obesity, anti-diabetic, and neuroprotective properties and to the treatment of cardiovascular and cerebrovascular diseases. The CB fruits have been used to produce a range of products: beverages, foods, and washing supplies. Future CB-related product development is thus expected to further leverage the health-promoting potential of this valuable ecological resource. The present review provides an overview of the botanical characteristics, processing, nutritional value, health-related properties, and applications of CB in order to provide a foundation for further research and development.
Collapse
Affiliation(s)
- Shuwen Zhang
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Zheping Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Li Sun
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Haiying Ren
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Xiliang Zheng
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Senmiao Liang
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Xingjiang Qi
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| |
Collapse
|
4
|
Phytochemicals with Added Value from Morella and Myrica Species. Molecules 2020; 25:molecules25246052. [PMID: 33371425 PMCID: PMC7767459 DOI: 10.3390/molecules25246052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Terrestrial plants, due to their sessile nature, are highly exposed to environmental pressure and therefore need to produce very effective molecules that enable them to survive all the threats. Myrica and Morella (Myricaceae) are taxonomically close genera, which include species of trees or shrubs with edible fruits that exhibit relevant uses in traditional medicine. For instance, in Chinese or Japanese folk medicine, they are used to treat diarrhea, digestive problems, headache, burns, and skin diseases. A wide array of compounds isolated from different parts of Myrica and/or Morella species possess several biological activities, like anticancer, antidiabetic, anti-obesity, and cardio-/neuro-/hepatoprotective activities, both in vitro and in vivo, with myricanol, myricitrin, quercitrin, and betulin being the most promising. There are still many other compounds isolated from both genera whose biological activities have not been evaluated, which represents an excellent opportunity to discover new applications for those compounds and valorize Morella/Myrica species.
Collapse
|