1
|
Wang Z, Zhou X, Shu Z, Zheng Y, Hu X, Zhang P, Huang H, Sheng L, Zhang P, Wang Q, Wang X, Li N. Regulation strategy, bioactivity, and physical property of plant and microbial polysaccharides based on molecular weight. Int J Biol Macromol 2023; 244:125360. [PMID: 37321440 DOI: 10.1016/j.ijbiomac.2023.125360] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Structural features affect the bioactivity, physical property, and application of plant and microbial polysaccharides. However, an indistinct structure-function relationship limits the production, preparation, and utilization of plant and microbial polysaccharides. Molecular weight is an easily regulated structural feature that affects the bioactivity and physical property of plant and microbial polysaccharides, and plant and microbial polysaccharides with a specific molecular weight are important for exerting their bioactivity and physical property. Therefore, this review summarized the regulation strategies of molecular weight via metabolic regulation; physical, chemical, and enzymic degradations; and the influence of molecular weight on the bioactivity and physical property of plant and microbial polysaccharides. Moreover, further problems and suggestions must be paid attention to during regulation, and the molecular weight of plant and microbial polysaccharides must be analyzed. The present work will promote the production, preparation, utilization, and investigation of the structure-function relationship of plant and microbial polysaccharides based on their molecular weight.
Collapse
Affiliation(s)
- Zichao Wang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China; School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihan Shu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001,China
| | - Hongtao Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lili Sheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengshuai Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Xueqin Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Bian Z, Cao C, Ding J, Ding L, Yu S, Zhang C, Liu Q, Zhu L, Li J, Zhang Y, Liu Y. Neuroprotective effects of PRG on Aβ 25-35-induced cytotoxicity through activation of the ERK1/2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116550. [PMID: 37120057 DOI: 10.1016/j.jep.2023.116550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phylloporia ribis (Schumach:Fr.)Ryvarden is a genus of needle Phellinus medicinal fungi, parasitic on the living rhizomes of hawthorn and pear trees. As a traditional Chinese medicine, Phylloporia ribis was used in folklore for long-term illness, weakness and memory loss in old age. Previous studies have shown that polysaccharides from Phylloporia ribis (PRG) significantly promoted synaptic growth in PC12 cells in a dose-dependent manner, exhibiting "NGF"-like neurotrophic activity. Aβ25-35 damage to PC12 cells produced neurotoxicity and decreased cell survival, and PRG reduced the apoptosis rate, suggesting that PRG has neuroprotective effects. The studies confirmed that PRG had the potential to be a neuroprotective agent, but its neuroprotective mechanism remained unclear. AIM OF THE STUDY We aimed to elucidate the neuroprotective effects of PRG in an Aβ25-35-induced Alzheimer's disease (AD) model. MATERIALS AND METHODS Highly-differentiated PC12 cells were treated with Aβ25-35 (AD model) and PRG, and were assessed for cellular apoptosis, inflammatory factors, oxidative stress, and kinase phosphorylation. RESULTS The results showed that the PRG groups effectively inhibited the neurotoxicity, mainly manifested by inhibiting mitochondrial oxidative stress, attenuating neuroinflammatory responses, and improving mitochondrial energy metabolism, eventually resulting in higher cell survival. The expression of p-ERK, p-CREB and BDNF proteins was increased in the PRG groups compared to the model group, which confirmed that PRG reversed the inhibition of the ERK pathway. CONCLUSION We provide evidence for neuroprotection conferred by PRG and its mechanism by inhibiting ERK1/2 hyper-phosphorylation, prevention of mitochondrial stress, and subsequent prevention of apoptosis. The study highlights PRG as a promising candidate with neuroprotective effects, the potential of which can be harnessed for identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Zhiying Bian
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chenzhen Cao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Health Surveillance Section, Junan County Center for Disease Control and Prevention, Linyi, 276600, China
| | - Jie Ding
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Liang Ding
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shuai Yu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chuanxiang Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Qian Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui, 273200, China
| | - Jing Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Yuhong Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Wang Q, Adil MZ, Xie X, Zhao S, Zhang J, Huang Z. Therapeutic targeting of mitochondria–proteostasis axis by antioxidant polysaccharides in neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023. [PMID: 37437985 DOI: 10.1016/bs.apcsb.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Aging is a major risk factor for many age-associated disorders, including neurodegenerative diseases. Both mitochondrial dysfunction and proteostatic decline are well-recognized hallmarks of aging and age-related neurodegeneration. Despite a lack of therapies for neurodegenerative diseases, a number of interventions promoting mitochondrial integrity and protein homeostasis (proteostasis) have been shown to delay aging-associated neurodegeneration. For example, many antioxidant polysaccharides are shown to have pharmacological potentials in Alzheimer's, Parkinson's and Huntington's diseases through regulation of mitochondrial and proteostatic pathways, including oxidative stress and heat shock responses. However, how mitochondrial and proteostatic mechanisms work together to exert the antineurodegenerative effect of the polysaccharides remains largely unexplored. Interestingly, recent studies have provided a growing body of evidence to support the crosstalk between mitostatic and proteostatic networks as well as the impact of the crosstalk on neurodegeneration. Here we summarize the recent progress of antineurodegenerative polysaccharides with particular attention in the mitochondrial and proteostatic context and provide perspectives on their implications in the crosstalk along the mitochondria-proteostasis axis.
Collapse
|
4
|
Zhang H, Jiang F, Li L, Liu X, Yan JK. Recent advances in the bioactive polysaccharides and other key components from Phellinus spp. and their pharmacological effects: A review. Int J Biol Macromol 2022; 222:3108-3128. [DOI: 10.1016/j.ijbiomac.2022.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
5
|
Xu P, Wu Z, Peng Y, Gao J, Zheng F, Tan J, Xu J, Wang T. Neuroprotection of Triptolide against Amyloid-Beta1-42-induced toxicity via the Akt/mTOR/p70S6K-mediated Autophagy Pathway. AN ACAD BRAS CIENC 2022; 94:e20210938. [PMID: 35946645 DOI: 10.1590/0001-3765202220210938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022] Open
Abstract
Triptolide is a natural active compound that has significant neuroprotective properties and shows promising effects in the treatment of Alzheimer's disease (AD). Recent studies have shown that autophagy occurs in AD. In this study, we determined whether autophagy regulated by triptolide ameliorates neuronal death caused by amyloid-Beta1-42 (Aβ1-42). We examined the effects of triptolide on cell viability, autophagy, apoptosis, and the protein kinase B/mammalian target of the rapamysin/70 kDa ribosomal protein S6 kinase (Akt/mTOR/p70S6K) signaling pathway in PC12 cells. The results indicated that triptolide treatment exhibited a cytoprotective effect against cell injury induced by Aβ1-42. Triptolide also reduced apoptosis and enhanced cell survival by decreasing autophagosome accumulation and inducing autophagic degradation. Furthermore, our results also showed that activating the Akt/mTOR/p70S6K mechanism was one reason for the protection of triptolide. Triptolide treatment protected against Aβ1-42-induced cytotoxicity by decreasing autophagosome accumulation, and inducing autophagic degradation in PC12 cells. These findings also suggest that the reduction of autophagosome accumulation observed in triptolide-treated cells was Akt/mTOR/p70S6K pathway dependent. Overall, triptolide exhibits a neuron protective effect and this study provides new insight into AD prevention and treatment.
Collapse
Affiliation(s)
- Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Zixuan Wu
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yanfei Peng
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jing Gao
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Fang Zheng
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Junzhen Tan
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jing Xu
- Tianjin Medical University General Hospital, Department of Neurology, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Tao Wang
- Tianjin University of Traditional Chinese Medicine, School of Integrative Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| |
Collapse
|
6
|
Wang H, Ma JX, Zhou M, Si J, Cui BK. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front Microbiol 2022; 13:965934. [PMID: 35992671 PMCID: PMC9382022 DOI: 10.3389/fmicb.2022.965934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 12/16/2022] Open
Abstract
For thousands of years, sanghuang is distinctive as a general designation for a group of precious and rare Chinese medicinal mushrooms. Numerous investigations have revealed that polysaccharide is one of the important biological active ingredients of sanghuang with various excellent biological activities, including antioxidant, anti-aging, anti-tumor, immunomodulatory, anti-inflammatory, anti-diabetic, hepatoprotective, and anti-microbial functionalities. For the past two decades, preparation, structural characterization, and reliable bioactivities of the polysaccharides from fruiting bodies, cultured mycelia, and fermentation broth of sanghuang have been arousing extensive interest, and particularly, different strains, sources, and isolation protocols might result in obvious discrepancies in structural features and bioactivities. Therefore, this review summarizes the recent reports on preparation strategies, structural features, bioactivities, and structure-activity relationships of sanghuang polysaccharides, which will enrich the knowledge on the values of natural sanghuang polysaccharides and support their further development and utilization as therapeutic agents, vaccines, and functional foods in tonic and clinical treatment.
Collapse
|
7
|
Zhang X, Lin L, Li H, Xia W, Liu Q, Zhou X, Dong L, Fu X. Update on new trend and progress of the mechanism of polysaccharides in the intervention of Alzheimer's disease, based on the new understanding of relevant theories: A review. Int J Biol Macromol 2022; 218:720-738. [PMID: 35902016 DOI: 10.1016/j.ijbiomac.2022.07.158] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disease with insidious onset and progressive progression, is the main type of dementia. Currently, there is no specific cure for the disease. At the same time, a series of drug developments based on the classic theory, the Aβ cascade hypothesis, have not completed phase III clinical trials, challenging the hypothesis. Polysaccharides obtained from natural products can be used in the treatment of AD, which has attracted academic attention due to its advantages of multi-target, multi-channel, no or modest side effects. The TCM syndrome type of AD is mainly "qi and blood deficiency, kidney essence deficiency", and the medicine is mainly used to replenish qi and blood, kidney and bone marrow. Thus, there has been extensive and in-depth research on polysaccharides obtained from tonic Chinese herbal medicine in China. Based on this background, this paper evaluated the effects and mechanisms of natural polysaccharides on AD by combing and screening English and related literature in recent 5 years and summarized the extraction process and structure-activity relationship of polysaccharides.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Ningxia Medical University, Yinchuan, 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lizhen Lin
- Ningxia Medical University, Yinchuan, 750004, China
| | - Hang Li
- Ningxia Medical University, Yinchuan, 750004, China
| | - Wenxin Xia
- Ningxia Medical University, Yinchuan, 750004, China
| | - Qiansong Liu
- Ningxia Medical University, Yinchuan, 750004, China
| | - Xirong Zhou
- Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Dong
- Ningxia Medical University, Yinchuan, 750004, China
| | - Xueyan Fu
- Ningxia Medical University, Yinchuan, 750004, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan 750004, China.
| |
Collapse
|
8
|
Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, Jaremko M, Emwas AH. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021; 14:1. [PMID: 35056897 PMCID: PMC8777698 DOI: 10.3390/pharmaceutics14010001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Fouzi Mouffouk
- Department of Chemistry, Faculty of Science, Kuwait University, Safat 13060, Kuwait;
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit P627, Palestine;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Li X, Zhang G, Li J, Jiang T, Chen H, Li P, Guan Y. Degradation by Vc‐H
2
O
2
, characterization and antioxidant activity of polysaccharides from
Passiflora edulis
peel. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xia Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Guozhu Zhang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Jing Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Tiemin Jiang
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Huiying Chen
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Peijun Li
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Yuan Guan
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
10
|
Chen X, Sun-Waterhouse D, Yao W, Li X, Zhao M, You L. Free radical-mediated degradation of polysaccharides: Mechanism of free radical formation and degradation, influence factors and product properties. Food Chem 2021; 365:130524. [PMID: 34252626 DOI: 10.1016/j.foodchem.2021.130524] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/14/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Increasing studies focus on the degradation of polysaccharides by free radicals. The review mainly provides an overview of degradation of polysaccharides by free radicals generated from hydrogen peroxide (H2O2). Evidence suggests that free radicals generated from H2O2 can be generated by various mechanisms. It broke glycosidic bonds mainly through hydrogen abstraction, causing the degradation of polysaccharides. Its degradation efficiency is affected by many factors, such as the concentration of polysaccharides and H2O2, temperature and pH. In addition, free radical degradation could change the physicochemical and structural properties of polysaccharides, such as water solubility, thermal stability, molecular weight, monosaccharide composition, apparent morphology, and chain conformation, but it had little effects on the primary structure of polysaccharides. Besides, free radical degradation could also improve the bioactivities of polysaccharides, including antioxidant, antitumor and anticoagulant activities.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wanzi Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Xiong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
11
|
Luteolin Protects Pheochromocytoma (PC-12) Cells against A β 25-35-Induced Cell Apoptosis through the ER/ERK/MAPK Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2861978. [PMID: 33335556 PMCID: PMC7723489 DOI: 10.1155/2020/2861978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
The regulatory effect of luteolin on the progression of Alzheimer's disease (AD) remains unclear from the perspective of apoptosis. The present study aimed to investigate the protective effects of luteolin against Aβ 25-35-induced cell apoptosis in pheochromocytoma (PC-12) cells. Aβ 25-35 was used to induce an in vitro model of AD. Estradiol was used as a positive control. The PC-12 cells were incubated with luteolin alone or in combination with fulvestrant or U0126. The results showed that luteolin treatment significantly prevents Aβ 25-35-induced decrease in cell viability and inhibits Aβ 25-35-induced cell apoptosis. After the addition of fulvestrant and U0126, the apoptosis rate of PC-12 cells increased significantly. In addition, luteolin treatment significantly upregulated the expression of Bcl-2 and downregulated the expression of Bax and caspase-3, whereas fulvestrant and U0126 partially reversed the effects of luteolin. Moreover, luteolin treatment upregulated the expression of ERβ and p-ERK1/2, whereas fulvestrant blocked the expression of p-ERK1/2. The study showed that luteolin could activate the ER/ERK/MAPK signalling pathway to protect PC-12 cells against Aβ 25-35-induced cell apoptosis via selectively acting on ERβ. Thus, luteolin may be considered as a potential novel therapeutic strategy for AD.
Collapse
|
12
|
Liu Z, Bian M, Ma QQ, Zhang Z, Du HH, Wei CX. Design and Synthesis of New Benzo[d]oxazole-Based Derivatives and Their Neuroprotective Effects on β-Amyloid-Induced PC12 Cells. Molecules 2020; 25:E5391. [PMID: 33218007 PMCID: PMC7698601 DOI: 10.3390/molecules25225391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a-5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer's disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.
Collapse
Affiliation(s)
- Zheng Liu
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China; (Z.L.); (M.B.); (Q.-Q.M.)
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China; (Z.L.); (M.B.); (Q.-Q.M.)
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
| | - Qian-Qian Ma
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China; (Z.L.); (M.B.); (Q.-Q.M.)
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
| | - Zhuo Zhang
- College of Pharmaceutical Sciences, Yanbian University, Yanji 133022, China;
| | - Huan-Huan Du
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China; (Z.L.); (M.B.); (Q.-Q.M.)
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
| | - Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China; (Z.L.); (M.B.); (Q.-Q.M.)
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
| |
Collapse
|