1
|
Racané L, Ptiček L, Kostrun S, Raić-Malić S, Taylor MC, Delves M, Alsford S, Olmo F, Francisco AF, Kelly JM. Bis-6-amidino-benzothiazole Derivative that Cures Experimental Stage 1 African Trypanosomiasis with a Single Dose. J Med Chem 2023; 66:13043-13057. [PMID: 37722077 PMCID: PMC10544003 DOI: 10.1021/acs.jmedchem.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 09/20/2023]
Abstract
We designed and synthesized a series of symmetric bis-6-amidino-benzothiazole derivatives with aliphatic central units and evaluated their efficacy against bloodstream forms of the African trypanosome Trypanosoma brucei. Of these, a dicationic benzothiazole compound (9a) exhibited sub-nanomolar in vitro potency with remarkable selectivity over mammalian cells (>26,000-fold). Unsubstituted 5-amidine groups and a cyclohexyl spacer were the crucial determinants of trypanocidal activity. In all cases, mice treated with a single dose of 20 mg kg-1 were cured of stage 1 trypanosomiasis. The compound displayed a favorable in vitro ADME profile, with the exception of low membrane permeability. However, we found evidence that uptake by T. brucei is mediated by endocytosis, a process that results in lysosomal sequestration. The compound was also active in low nanomolar concentrations against cultured asexual forms of the malaria parasite Plasmodium falciparum. Therefore, 9a has exquisite cross-species efficacy and represents a lead compound with considerable therapeutic potential.
Collapse
Affiliation(s)
- Livio Racané
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Lucija Ptiček
- Department
of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Sanja Kostrun
- Chemistry
Department, Selvita Ltd., Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Silvana Raić-Malić
- Department
of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000 Zagreb, Croatia
| | - Martin Craig Taylor
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Michael Delves
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Sam Alsford
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Francisco Olmo
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - Amanda Fortes Francisco
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| | - John M. Kelly
- Department
of Infection Biology, London School of Hygiene
and Tropical Medicine, Keppel Street, WC1E 7HT London, U.K.
| |
Collapse
|
2
|
Caroli AP, Mansoldo FRP, Cardoso VS, Lage CLS, Carmo FL, Supuran CT, Beatriz Vermelho A. Are patents important indicators of innovation for Chagas disease treatment? Expert Opin Ther Pat 2023; 33:193-209. [PMID: 36786067 DOI: 10.1080/13543776.2023.2176219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
INTRODUCTION Chagas disease is a neglected, endemic disease in 21 countries, spreading to non-endemic countries too. Like other neglected diseases affecting primarily low- and middle-income countries, low investment and the absence of new chemical entities from the industry occurred. Increased knowledge about the parasite, drug targets, and vector control has been observed, but this was not translated into new drugs. The partnerships of pharmaceutical companies with academies and consolidated networks to increment the new drugs and treatment research in Chagas disease are shown. The current review analyzes in detail the patents dealing with compounds candidates for new drugs and treatment. The patent search was performed using Orbit Intelligence® software in the 2001-2021 period. AREAS COVERED The author focused specifically on patents for the treatment, the new candidates disclosed in the patents, and the barriers to innovation. EXPERT OPINION Patents in Chagas disease have been increasing in the last years, although they do not bring new compounds to an effective treatment.
Collapse
Affiliation(s)
- Andrea Pestana Caroli
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Felipe R P Mansoldo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Veronica S Cardoso
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| | - Celso Luiz Salgueiro Lage
- National Institute of Intellectual Property (INPI), Graduate and Research Division, Rio de Janeiro-RJ, Brazil
| | - Flavia L Carmo
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, LEMM - Molecular Microbial Ecology Laboratory
| | - Claudiu T Supuran
- NEUROFARBA Department Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Sesto Fiorentino (Florence), Italy
| | - Alane Beatriz Vermelho
- Federal University of Rio de Janeiro (UFRJ), Institute of Microbiology Paulo de Góes, BIOINOVAR - Biocatalysis, Bioproducts and Bioenergy, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Yarosh NО, Zhilitskaya LV, Dorofeev IА. First Synthesis of N-Organyl-S-silylorganyl Derivatives of 2-Mercaptobenzothiazole. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
4
|
Henriquez-Figuereo A, Morán-Serradilla C, Angulo-Elizari E, Sanmartín C, Plano D. Small molecules containing chalcogen elements (S, Se, Te) as new warhead to fight neglected tropical diseases. Eur J Med Chem 2023; 246:115002. [PMID: 36493616 DOI: 10.1016/j.ejmech.2022.115002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Neglected tropical diseases (NTDs) encompass a group of infectious diseases with a protozoan etiology, high incidence, and prevalence in developing countries. As a result, economic factors constitute one of the main obstacles to their management. Endemic countries have high levels of poverty, deprivation and marginalization which affect patients and limit their access to proper medical care. As a matter of fact, statistics remain uncollected in some affected areas due to non-reporting cases. World Health Organization and other organizations proposed a plan for the eradication and control of the vector, although many of these plans were halted by the COVID-19 pandemic. Despite of the available drugs to treat these pathologies, it exists a lack of effectiveness against several parasite strains. Treatment protocols for diseases such as American trypanosomiasis (Chagas disease), leishmaniasis, and human African trypanosomiasis (HAT) have not achieved the desired results. Unfortunately, these drugs present limitations such as side effects, toxicity, teratogenicity, renal, and hepatic impairment, as well as high costs that have hindered the control and eradication of these diseases. This review focuses on the analysis of a collection of scientific shreds of evidence with the aim of identifying novel chalcogen-derived molecules with biological activity against Chagas disease, leishmaniasis and HAT. Compounds illustrated in each figure share the distinction of containing at least one chalcogen element. Sulfur (S), selenium (Se), and tellurium (Te) have been grouped and analyzed in accordance with their design strategy, chemical synthesis process and biological activity. After an exhaustive revision of the related literature on S, Se, and Te compounds, 183 compounds presenting excellent biological performance were gathered against the different causative agents of CD, leishmaniasis and HAT.
Collapse
Affiliation(s)
- Andreina Henriquez-Figuereo
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Cristina Morán-Serradilla
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Eduardo Angulo-Elizari
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain
| | - Carmen Sanmartín
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Daniel Plano
- University of Navarra, School of Pharmacy and Nutrition, Department of Pharmaceutical Technology and Chemistry, Irunlarrea 1, 31008, Pamplona, Spain; Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
5
|
Rubio-Hernández M, Alcolea V, Pérez-Silanes S. Potential of sulfur-selenium isosteric replacement as a strategy for the development of new anti-chagasic drugs. Acta Trop 2022; 233:106547. [PMID: 35667455 DOI: 10.1016/j.actatropica.2022.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Current treatment for Chagas disease is based on only two drugs: benznidazole and nifurtimox. Compounds containing sulfur (S) in their structure have shown promising results in vitro and in vivo against Trypanosoma cruzi, the parasite causing Chagas disease. Notably, some reports show that the isosteric replacement of S by selenium (Se) could be an interesting strategy for the development of new compounds for the treatment of Chagas disease. To date, the activity against T. cruzi of three Se- containing groups has been compared with their S counterparts: selenosemicarbazones, selenoquinones, and selenocyanates. More studies are needed to confirm the positive results of Se compounds. Therefore, we have investigated S compounds described in the literature tested against T. cruzi. We focused on those tested in vivo that allowed isosteric replacement to propose their Se counterparts as promising compounds for the future development of new drugs against Chagas disease.
Collapse
|
6
|
Yarosh NO, Zhilitskaya LV, Dorofeev IA. Synthesis of Acetylenic [Chloro(iodo)methyl]silanes and 2-Sulfanylbenzothiazoles Based Thereon. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s107042802110109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Racané L, Rep V, Kraljević Pavelić S, Grbčić P, Zonjić I, Radić Stojković M, Taylor MC, Kelly JM, Raić-Malić S. Synthesis, antiproliferative and antitrypanosomal activities, and DNA binding of novel 6-amidino-2-arylbenzothiazoles. J Enzyme Inhib Med Chem 2021; 36:1952-1967. [PMID: 34455887 PMCID: PMC8409973 DOI: 10.1080/14756366.2021.1959572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A series of 6-amidinobenzothiazoles, linked via phenoxymethylene or directly to the 1,2,3-triazole ring with a p-substituted phenyl or benzyl moiety, were synthesised and evaluated in vitro against four human tumour cell lines and the protozoan parasite Trypanosoma brucei. The influence of the type of amidino substituent and phenoxymethylene linker on antiproliferative and antitrypanosomal activities was observed, showing that the imidazoline moiety had a major impact on both activities. Benzothiazole imidazoline 14a, which was directly connected to N-1-phenyl-1,2,3-triazole, had the most potent growth-inhibitory effect (IC50 = 0.25 µM) on colorectal adenocarcinoma (SW620), while benzothiazole imidazoline 11b, containing a phenoxymethylene linker, exhibited the best antitrypanosomal potency (IC90 = 0.12 µM). DNA binding assays showed a non-covalent interaction of 6-amidinobenzothiazole ligands, indicating both minor groove binding and intercalation modes of DNA interaction. Our findings encourage further development of novel structurally related 6-amidino-2-arylbenzothiazoles to obtain more selective anticancer and anti-HAT agents.
Collapse
Affiliation(s)
- Livio Racané
- Faculty of Textile Technology, Department of Applied Chemistry, University of Zagreb, Zagreb, Croatia
| | - Valentina Rep
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| | | | - Petra Grbčić
- Faculty of Health Studies, University of Rijeka, Rijeka, Croatia
| | - Iva Zonjić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Silvana Raić-Malić
- Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Wang R, Xu H, Zhang Y, Hu Y, Wei Y, Du X, Zhao H. Ag-Cu copromoted direct C2-H bond thiolation of azoles with Bunte salts as sulfur sources. Org Biomol Chem 2021; 19:5899-5904. [PMID: 34132728 DOI: 10.1039/d1ob00823d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A direct C2-H thiolation of azoles with Bunte salts was achieved under the combined action of copper and silver salts. This protocol could furnish various substituted 2-thioazoles in moderate to good yields. This method has a broad substrate scope and shows good functional group tolerance.
Collapse
Affiliation(s)
- Rui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Hongyan Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Ying Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Yuntao Hu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Yingsu Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Xiao Du
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Huaiqing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
9
|
Martínez-Cerón S, Gutiérrez-Nágera NA, Mirzaeicheshmeh E, Cuevas-Hernández RI, Trujillo-Ferrara JG. Phenylbenzothiazole derivatives: effects against a Trypanosoma cruzi infection and toxicological profiles. Parasitol Res 2021; 120:2905-2918. [PMID: 34195872 DOI: 10.1007/s00436-021-07137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
Current treatments for Chagas disease have a limited impact during the chronic stage and trigger severe side effects. Treatments target Trypanosoma cruzi, the etiological agent of the disease. The aims of this study were to evaluate the trypanocidal activity of four 2-phenylbenzothiazole derivatives (BZT1-4) in vitro by using the infectious and non-infectious forms of T. cruzi (trypomastigotes and epimastigotes, respectively) and to test the most promising compound (BZT4) in vivo in mice. Additionally, the toxicological profile and possible neuronal damage were examined. In relation to trypomastigotes, BZT4 was more selective and effective than the reference drug (benznidazole) during this infective stage, apparently due to the synergistic action of the CF3 and COOH substituents in the molecule. During the first few hours post-administration of BZT4, parasitemia decreased by 40% in an in vivo model of short-term treatment, but parasite levels later returned to the basal state. In the long-term assessment, the compound did not produce a significant antiparasitic effect, only attaining a 30% reduction in parasitemia by day 20 with the dose of 16 mg/kg. The toxicity test was based on repeated dosing of BZT4 (administered orally) during 21 days, which did not cause liver damage. However, the compound altered the concentration of proteins and the proteinic profile of neuronal cells in vitro, perhaps leading to an effect on the central nervous system. Further research on the low trypanocidal activity in vivo compared to the better in vitro effect could possibly facilitate molecular redesign to improve trypanocidal activity.
Collapse
Affiliation(s)
- Sarai Martínez-Cerón
- Laboratory of Biochemistry Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Nora Andrea Gutiérrez-Nágera
- Instituto Nacional de Medicina Genómica - INMEGEN, Av. Periférico Sur No. 4809, Col. Arenal Tepepan, Tlalpan, 14610, Mexico City, Mexico
| | - Elaheh Mirzaeicheshmeh
- Instituto Nacional de Medicina Genómica - INMEGEN, Av. Periférico Sur No. 4809, Col. Arenal Tepepan, Tlalpan, 14610, Mexico City, Mexico
| | - Roberto I Cuevas-Hernández
- Laboratory of Biochemistry Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340, Mexico City, Mexico.
| | - José G Trujillo-Ferrara
- Laboratory of Biochemistry Research, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340, Mexico City, Mexico.
| |
Collapse
|
10
|
Linares-Anaya O, Avila-Sorrosa A, Díaz-Cedillo F, Gil-Ruiz LÁ, Correa-Basurto J, Salazar-Mendoza D, Orjuela AL, Alí-Torres J, Ramírez-Apan MT, Morales-Morales D. Synthesis, Characterization, and Preliminary In Vitro Cytotoxic Evaluation of a Series of 2-Substituted Benzo [ d] [1,3] Azoles. Molecules 2021; 26:molecules26092780. [PMID: 34066820 PMCID: PMC8125891 DOI: 10.3390/molecules26092780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
A series of benzo [d] [1,3] azoles 2-substituted with benzyl- and allyl-sulfanyl groups were synthesized, and their cytotoxic activities were in vitro evaluated against a panel of six human cancer cell lines. The results showed that compounds BTA-1 and BMZ-2 have the best inhibitory effects, compound BMZ-2 being comparable in some cases with the reference drug tamoxifen and exhibiting a low cytotoxic effect against healthy cells. In silico molecular coupling studies at the tamoxifen binding site of ERα and GPER receptors revealed affinity and the possible mode of interaction of both compounds BTA-1 and BMZ-2.
Collapse
Affiliation(s)
- Ozvaldo Linares-Anaya
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
- Correspondence: ; Tel.: +52-555-729-6000
| | - Francisco Díaz-Cedillo
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
| | - Luis Ángel Gil-Ruiz
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México 11340, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México 11340, Mexico;
| | - Domingo Salazar-Mendoza
- Carretera a Acatlima, Huajuapan de León, Universidad Tecnológica de la Mixteca, Oaxaca 69000, Mexico;
| | - Adrian L. Orjuela
- Departamento de Química, Universidad Nacional de Colombia-Sede, Bogotá 111321, Colombia; (A.L.O.); (J.A.-T.)
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia-Sede, Bogotá 111321, Colombia; (A.L.O.); (J.A.-T.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| |
Collapse
|
11
|
Zhilitskaya LV, Shainyan BA, Yarosh NO. Modern Approaches to the Synthesis and Transformations of Practically Valuable Benzothiazole Derivatives. Molecules 2021; 26:2190. [PMID: 33920281 PMCID: PMC8070523 DOI: 10.3390/molecules26082190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/07/2023] Open
Abstract
The review is devoted to modern trends in the chemistry of 2-amino and 2-mercapto substituted benzothiazoles covering the literature since 2015. The reviewed heterocycles belong to biologically active and industrially demanded compounds. Newly developed synthesis methods can be divided into conventional multistep processes and one-pot, atom economy procedures, realized using green chemistry principles and simple reagents. The easy functionalization of the 2-NH2 and 2-SH groups and the benzene ring of the benzothiazole moiety allows considering them as highly reactive building blocks for organic and organoelement synthesis, including the synthesis of pharmacologically active heterocycles. The review provides a summary of findings, which may be useful for developing new drugs and materials and new synthetic approaches and patterns of reactivity.
Collapse
Affiliation(s)
| | - Bagrat A. Shainyan
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia; (L.V.Z.); (N.O.Y.)
| | | |
Collapse
|
12
|
Synthesis and biological evaluation in vitro and in silico of N-propionyl-N'-benzeneacylhydrazone derivatives as cruzain inhibitors of Trypanosoma cruzi. Mol Divers 2020; 26:39-50. [PMID: 33216257 DOI: 10.1007/s11030-020-10156-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/04/2020] [Indexed: 01/15/2023]
Abstract
An N-acylhydrazone scaffold has been used to develop new drugs with diverse biological activities, including trypanocidal activity against different strains of Trypanosoma cruzi. However, their mechanism of action is not clear, although in T. cruzi it has been suggested that the enzyme cruzain is involved. The aim in this work was to obtain new N-propionyl-N'-benzeneacylhydrazone derivatives as potential anti-T. cruzi agents and elucidate their potential mechanism of action by a molecular docking analysis and effects on the expression of the cruzain gene. Compounds 9 and 12 were the most active agents against epimastigotes and compound 5 showed better activity than benznidazole in T. cruzi blood trypomastigotes. Additionally, compounds 9 and 12 significantly increase the expression of the cruzain gene. In summary, the in silico and in vitro data presented herein suggest that compound 9 is a cruzain inhibitor.
Collapse
|
13
|
Avila-Sorrosa A, Bando-Vázquez AY, Alvarez-Alvarez V, Suarez-Contreras E, Nieto-Meneses R, Nogueda-Torres B, Vargas-Díaz ME, Díaz-Cedillo F, Reyes-Martínez R, Hernandez-Ortega S, Morales-Morales D. Synthesis, characterization and preliminary in vitro trypanocidal activity of N-arylfluorinated hydroxylated-Schiff bases. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Ramos-Espinosa Á, Valdés H, Rufino-Felipe E, Morales-Morales D. Synthesis and characterization of non-symmetric Pd(II)–POCOP pincer compounds including a meta-(2-aminobenzothiazole) fragment. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|