1
|
Wang W, Chen H. Predicting miRNA-disease associations based on graph attention networks and dual Laplacian regularized least squares. Brief Bioinform 2022; 23:6645486. [PMID: 35849099 DOI: 10.1093/bib/bbac292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 01/05/2023] Open
Abstract
Increasing biomedical evidence has proved that the dysregulation of miRNAs is associated with human complex diseases. Identification of disease-related miRNAs is of great importance for disease prevention, diagnosis and remedy. To reduce the time and cost of biomedical experiments, there is a strong incentive to develop efficient computational methods to infer potential miRNA-disease associations. Although many computational approaches have been proposed to address this issue, the prediction accuracy needs to be further improved. In this study, we present a computational framework MKGAT to predict possible associations between miRNAs and diseases through graph attention networks (GATs) using dual Laplacian regularized least squares. We use GATs to learn embeddings of miRNAs and diseases on each layer from initial input features of known miRNA-disease associations, intra-miRNA similarities and intra-disease similarities. We then calculate kernel matrices of miRNAs and diseases based on Gaussian interaction profile (GIP) with the learned embeddings. We further fuse the kernel matrices of each layer and initial similarities with attention mechanism. Dual Laplacian regularized least squares are finally applied for new miRNA-disease association predictions with the fused miRNA and disease kernels. Compared with six state-of-the-art methods by 5-fold cross-validations, our method MKGAT receives the highest AUROC value of 0.9627 and AUPR value of 0.7372. We use MKGAT to predict related miRNAs for three cancers and discover that all the top 50 predicted results in the three diseases are confirmed by existing databases. The excellent performance indicates that MKGAT would be a useful computational tool for revealing disease-related miRNAs.
Collapse
Affiliation(s)
- Wengang Wang
- School of Software, East China Jiaotong University, Nanchang 330013, China
| | - Hailin Chen
- School of Software, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
2
|
Yang Y, Shang J, Sun Y, Li F, Zhang Y, Kong XZ, Li S, Liu JX. TLNPMD: Prediction of miRNA-Disease Associations Based on miRNA-Drug-Disease Three-Layer Heterogeneous Network. Molecules 2022; 27:4371. [PMID: 35889243 PMCID: PMC9324587 DOI: 10.3390/molecules27144371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Many microRNAs (miRNAs) have been confirmed to be associated with the generation of human diseases. Capturing miRNA-disease associations (M-DAs) provides an effective way to understand the etiology of diseases. Many models for predicting M-DAs have been constructed; nevertheless, there are still several limitations, such as generally considering direct information between miRNAs and diseases, usually ignoring potential knowledge hidden in isolated miRNAs or diseases. To overcome these limitations, in this study a novel method for predicting M-DAs was developed named TLNPMD, highlights of which are the introduction of drug heuristic information and a bipartite network reconstruction strategy. Specifically, three bipartite networks, including drug-miRNA, drug-disease, and miRNA-disease, were reconstructed as weighted ones using such reconstruction strategy. Based on these weighted bipartite networks, as well as three corresponding similarity networks of drugs, miRNAs and diseases, the miRNA-drug-disease three-layer heterogeneous network was constructed. Then, this heterogeneous network was converted into three two-layer heterogeneous networks, for each of which the network path computational model was employed to predict association scores. Finally, both direct and indirect miRNA-disease paths were used to predict M-DAs. Comparative experiments of TLNPMD and other four models were performed and evaluated by five-fold and global leave-one-out cross validations, results of which show that TLNPMD has the highest AUC values among those of compared methods. In addition, case studies of two common diseases were carried out to validate the effectiveness of the TLNPMD. These experiments demonstrate that the TLNPMD may serve as a promising alternative to existing methods for predicting M-DAs.
Collapse
Affiliation(s)
- Yi Yang
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Junliang Shang
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Yan Sun
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Feng Li
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China;
| | - Xiang-Zhen Kong
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Shengjun Li
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao 276826, China; (Y.Y.); (Y.S.); (F.L.); (X.-Z.K.); (S.L.); (J.-X.L.)
| |
Collapse
|
3
|
Hu JF, Yim D, Ma D, Huber SM, Davis N, Bacusmo JM, Vermeulen S, Zhou J, Begley TJ, DeMott MS, Levine SS, de Crécy-Lagard V, Dedon PC, Cao B. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq. Nat Biotechnol 2021; 39:978-988. [PMID: 33859402 PMCID: PMC8355021 DOI: 10.1038/s41587-021-00874-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.
Collapse
Affiliation(s)
- Jennifer F Hu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Bristol Myers Squibb, Seattle, WA, USA
| | - Daniel Yim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- A*STAR Genome Institute of Singapore, Singapore, Singapore
| | - Duanduan Ma
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sabrina M Huber
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Laboratory of Toxicology, ETH Zürich, Zürich, Switzerland
| | - Nick Davis
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Theon Therapeutics, Cambridge, MA, USA
| | - Jo Marie Bacusmo
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, USA
| | - Sidney Vermeulen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jieliang Zhou
- KK Research Center, KK Women's and ChildrenBristol Myers Squibb's Hospital, Singapore, Singapore
| | - Thomas J Begley
- The RNA Institute and Department of Biology, University at Albany, Albany, NY, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG, Singapore, Singapore.
| | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG, Singapore, Singapore.
- College of Life Sciences, Qufu Normal University, Qufu, China.
| |
Collapse
|
4
|
Li A, Deng Y, Tan Y, Chen M. A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method. PLoS One 2021; 16:e0252971. [PMID: 34138933 PMCID: PMC8211179 DOI: 10.1371/journal.pone.0252971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
A large number of studies have shown that the variation and disorder of miRNAs are important causes of diseases. The recognition of disease-related miRNAs has become an important topic in the field of biological research. However, the identification of disease-related miRNAs by biological experiments is expensive and time consuming. Thus, computational prediction models that predict disease-related miRNAs must be developed. A novel network projection-based dual random walk with restart (NPRWR) was used to predict potential disease-related miRNAs. The NPRWR model aims to estimate and accurately predict miRNA-disease associations by using dual random walk with restart and network projection technology, respectively. The leave-one-out cross validation (LOOCV) was adopted to evaluate the prediction performance of NPRWR. The results show that the area under the receiver operating characteristic curve(AUC) of NPRWR was 0.9029, which is superior to that of other advanced miRNA-disease associated prediction methods. In addition, lung and kidney neoplasms were selected to present a case study. Among the first 50 miRNAs predicted, 50 and 49 miRNAs have been proven by in databases or relevant literature. Moreover, NPRWR can be used to predict isolated diseases and new miRNAs. LOOCV and the case study achieved good prediction results. Thus, NPRWR will become an effective and accurate disease-miRNA association prediction model.
Collapse
Affiliation(s)
- Ang Li
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| | - Yingwei Deng
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
- Hainan Key Laboratory for Computational Science and Application, Haikou, China
| | - Yan Tan
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| | - Min Chen
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| |
Collapse
|
5
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
6
|
Le DH, Tran TTH. RWRMTN: a tool for predicting disease-associated microRNAs based on a microRNA-target gene network. BMC Bioinformatics 2020; 21:244. [PMID: 32539680 PMCID: PMC7296691 DOI: 10.1186/s12859-020-03578-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The misregulation of microRNA (miRNA) has been shown to cause diseases. Recently, we have proposed a computational method based on a random walk framework on a miRNA-target gene network to predict disease-associated miRNAs. The prediction performance of our method is better than that of some existing state-of-the-art network- and machine learning-based methods since it exploits the mutual regulation between miRNAs and their target genes in the miRNA-target gene interaction networks. RESULTS To facilitate the use of this method, we have developed a Cytoscape app, named RWRMTN, to predict disease-associated miRNAs. RWRMTN can work on any miRNA-target gene network. Highly ranked miRNAs are supported with evidence from the literature. They then can also be visualized based on the rankings and in relationships with the query disease and their target genes. In addition, automation functions are also integrated, which allow RWRMTN to be used in workflows from external environments. We demonstrate the ability of RWRMTN in predicting breast and lung cancer-associated miRNAs via workflows in Cytoscape and other environments. CONCLUSIONS Considering a few computational methods have been developed as software tools for convenient uses, RWRMTN is among the first GUI-based tools for the prediction of disease-associated miRNAs which can be used in workflows in different environments.
Collapse
Affiliation(s)
- Duc-Hau Le
- Department of Computational Biomedicine, Vingroup Big Data Institute, No 7, Bang Lang 1 Street, Viet Hung Ward, Long Bien District, Hanoi, Vietnam.
| | - Trang T H Tran
- Department of Computational Biomedicine, Vingroup Big Data Institute, No 7, Bang Lang 1 Street, Viet Hung Ward, Long Bien District, Hanoi, Vietnam
| |
Collapse
|
7
|
Zhang Y, Chen M, Cheng X, Wei H. MSFSP: A Novel miRNA-Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection. Front Genet 2020; 11:389. [PMID: 32425980 PMCID: PMC7204399 DOI: 10.3389/fgene.2020.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Growing evidences have indicated that microRNAs (miRNAs) play a significant role relating to many important bioprocesses; their mutations and disorders will cause the occurrence of various complex diseases. The prediction of miRNAs associated with underlying diseases via computational approaches is beneficial to identify biomarkers and discover specific medicine, which can greatly reduce the cost of diagnosis, cure, prognosis, and prevention of human diseases. However, how to further achieve a more reliable prediction of potential miRNA-disease associations with effective integration of different biological data is a challenge for researchers. In this study, we proposed a computational model by using a federated method of combined multiple-similarities fusion and space projection (MSFSP). MSFSP firstly fused the integrated disease similarity (composed of disease semantic similarity, disease functional similarity, and disease Hamming similarity) with the integrated miRNA similarity (composed of miRNA functional similarity, miRNA sequence similarity, and miRNA Hamming similarity). Secondly, it constructed the weighted network of miRNA-disease associations from the experimentally verified Boolean network of miRNA-disease associations by using similarity networks. Finally, it calculated the prediction results by weighting miRNA space projection scores and the disease space projection scores. Leave-one-out cross-validation demonstrated that MSFSP has the distinguished predictive accuracy with area under the receiver operating characteristics curve (AUC) of 0.9613 better than that of five other existing models. In case studies, the predictive ability of MSFSP was further confirmed as 96 and 98% of the top 50 predictions for prostatic neoplasms and lung neoplasms were successfully validated by experimental evidences and supporting experimental evidences were also found for 100% of the top 50 predictions for isolated diseases.
Collapse
Affiliation(s)
- Yi Zhang
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Xiaohui Cheng
- School of Information Science and Engineering, Guilin University of Technology, Guilin, China
| | - Hanyan Wei
- School of Pharmacy, Guilin Medical University, Guilin, China
| |
Collapse
|