A SF
5 Derivative of Triphenylphosphine as an Electron-Poor Ligand Precursor for Rh and Ir Complexes.
Molecules 2020;
25:molecules25173977. [PMID:
32882799 PMCID:
PMC7504798 DOI:
10.3390/molecules25173977]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 01/25/2023] Open
Abstract
The synthesis of the triarylphosphine, P(p-C6H4SF5)3 containing a SF5 group, has been achieved. The experimental and theoretical studies showed that P(p-C6H4SF5)3 is a weaker σ-donor when compared with other substituted triarylphosphines, which is consistent with the electron-withdrawing effect of the SF5 moiety. The studies also revealed a moderate air stability of the phosphine. The σ-donor capabilities of P(p-C6H4SF5)3 were estimated from the phosphorus-selenium coupling constant in SeP(p-C6H4SF5)3 and by DFT calculations. The behavior of P(p-C6H4SF5)3 as ligand has been investigated by the synthesis of the iridium and rhodium complexes [MCl(COD){P(p-C6H4SF5)3}], [MCl(CO)2{P(p-C6H4SF5)3}2] (M = Ir, Rh), or [Rh(µ-Cl)(COE){P(p-C6H4SF5)3}]2, and the molecular structures of [IrCl(COD){P(p-C6H4SF5)3}] and [Rh(µ-Cl)(COE){P(p-C6H4SF5)3}]2 were determined by single X-ray diffraction. The structures revealed a slightly larger cone angle for P(p-C6H4SF5)3 when compared to other para-substituted triarylphosphines.
Collapse