1
|
Elhakim A, Kim U, Kim E, Lee S, Lee JM, Jung HS, Kim S. Effects of icariin on dental pulp stem cells and its potential applications in dentin repair. Arch Oral Biol 2025; 169:106112. [PMID: 39437662 DOI: 10.1016/j.archoralbio.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES As dental pulp therapy evolves towards regenerative approaches, biomolecules such as icariin, derived from Epimedium flowers, are being evaluated for their therapeutic potential. This study investigates icariin's effectiveness in promoting odontogenic differentiation in human dental pulp stem cells (hDPSCs) in vitro and as a pulp-capping agent in vivo. DESIGN The study explored the effects of icariin on hDPSCs at concentrations of 10, 20, and 40 µM. Cell viability and migration assays were conducted to evaluate cytotoxicity and chemotaxis. Odontogenic differentiation was assessed using alkaline phosphatase staining and alizarin red S (ARS) staining, complemented by real-time PCR and Western blot analyses of key markers such as RUNX family transcription factor 2 (RUNX2), collagen type I alpha 1 chain (COL1A1), alkaline phosphatase (ALPL), and dentin sialophosphoprotein (DSPP). Additionally, the in vivo effects of icariin were tested in a rat maxillary molar model, where icariin-treated collagen sponges were used for direct pulp capping to evaluate its potential to induce reparative dentin formation. RESULTS Icariin showed no cytotoxic effects on hDPSCs at any tested concentration, enhanced migratory activity in a dose-dependent manner, and significantly increased alkaline phosphatase activity and calcium deposition. Gene and protein expression analyses revealed a dose-dependent increase in odontogenic differentiation markers in icariin-treated hDPSCs. In vivo, icariin effectively promoted reparative dentin formation in exposed rat pulp. CONCLUSIONS Icariin enhances odontogenic differentiation of hDPSCs and has promising potential as a pulp-capping agent for vital pulp therapy.
Collapse
Affiliation(s)
- Ahmed Elhakim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea; Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ukseong Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| | - Euiseong Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| | - Sukjoon Lee
- Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| | - Jong-Min Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea.
| | - Sunil Kim
- Microscope Center, Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, South Korea.
| |
Collapse
|
2
|
Li B, Zhang S, Yun X, Liu C, Xiao R, Lu M, Xu X, Lin F. NEDD4's effect on osteoblastogenesis potential of bone mesenchymal stem cells in rats concerned with PI3K/Akt pathway. Differentiation 2024; 141:100830. [PMID: 39674086 DOI: 10.1016/j.diff.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Neural precursor cell expressed developmentally down-regulated 4 (NEDD4) is an E3 ubiquitin ligase implicated in craniofacial development. Emerging evidence suggests that NEDD4 may down-regulates Akt signaling, a key element of the PI3K/Akt pathway involved in cell differentiation. This study aimed to investigate NEDD4's role in bone mesenchymal stem cells (BMSCs) differentiation and its interaction with the PI3K/Akt pathway. BMSCs were isolated from SD rats, and NEDD4 expression increased during osteogenic differentiation. Silencing NEDD4 with siRNA elevated alkaline phosphatase (ALP), osteocalcin (OCN), Akt, and mTORC1 expression during induction, while subsequent treatment with LY294002 (a broad spectrum PI3K inhibitor) reduced Akt, mTORC1, ALP, and OCN levels. These findings suggest that NEDD4 may inhibit BMSCs differentiation by suppressing the PI3K/Akt pathway during osteogenesis.
Collapse
Affiliation(s)
- Bo Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Shuang Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xiaoxian Yun
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Chengyi Liu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Rui Xiao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Mingjie Lu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
| | - Xiaomei Xu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China.
| | - Fuwei Lin
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Orthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
3
|
Chen XL, Li SX, Ge T, Zhang DD, Wang HF, Wang W, Li YZ, Song XM. Epimedium Linn: A Comprehensive Review of Phytochemistry, Pharmacology, Clinical Applications and Quality Control. Chem Biodivers 2024; 21:e202400846. [PMID: 38801026 DOI: 10.1002/cbdv.202400846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Epimedium genus is a traditional Chinese medicine, which has functions of tonifying kidney and yang, strengthening tendons and bones, dispelling wind and emoving dampness. It is mainly used for the treatment of impotence and spermatorrhea, osteoporosis, Parkinson's, Alzheimer's, and cardiovascular diseases. The aim of this review is to provide a systematic summary of the phytochemistry, pharmacology, and clinical applications of the Epimedium Linn. In this paper, the relevant literature on Epimedium Linn. was collected from 1987 to the present day, and more than 274 chemical constituents, including flavonoids, phenylpropanoids, lignans, phenanthrenes, and others, were isolated from this genus. Modern pharmacological studies have shown that Epimedium Linn. has osteoprotective, neuroprotective, cardiovascular protective, and immune enhancing pharmacological effects. In addition, Epimedium Linn. has been commonly used to treat osteoporosis, erectile dysfunction, hypertension and cardiovascular disease. In this paper, the distribution of resources, chemical compositions, pharmacological effects, clinical applications and quality control of Epimedium Linn. are progressed to provide a reference for further research and development of the resources of this genus.
Collapse
Affiliation(s)
- Xiao-Lin Chen
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Shi-Xing Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Teng Ge
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, P. R. China
| | - Dong-Dong Zhang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Hai-Fang Wang
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Wei Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, P. R. China
| | - Yu-Ze Li
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Xiao-Mei Song
- School of Pharmacy, Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| |
Collapse
|
4
|
Ilyas S, Lee J, Lee D. Emerging Roles of Natural Compounds in Osteoporosis: Regulation, Molecular Mechanisms and Bone Regeneration. Pharmaceuticals (Basel) 2024; 17:984. [PMID: 39204089 PMCID: PMC11356869 DOI: 10.3390/ph17080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Bone health is a critical aspect of overall well-being, and disorders such as osteoporosis pose significant challenges worldwide. East Asian Herbal Medicine (EAHM), with its rich history and holistic approach, offers promising avenues for enhancing bone regeneration. In this critical review article, we analyze the intricate mechanisms through which EAHM compounds modulate bone health. We explore the interplay between osteogenesis and osteoclastogenesis, dissect signaling pathways crucial for bone remodeling and highlight EAHM anti-inflammatory effects within the bone microenvironment. Additionally, we emphasize the promotion of osteoblast viability and regulation of bone turnover markers by EAHM compounds. Epigenetic modifications emerge as a fascinating frontier where EAHM influences DNA methylation and histone modifications to orchestrate bone regeneration. Furthermore, we highlight EAHM effects on osteocytes, mesenchymal stem cells and immune cells, unraveling the holistic impact in bone tissue. Finally, we discuss future directions, including personalized medicine, combinatorial approaches with modern therapies and the integration of EAHM into evidence-based practice.
Collapse
Affiliation(s)
| | | | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (S.I.); (J.L.)
| |
Collapse
|
5
|
Zhu C, Jia Y, Tang Y, Guo C, Xi J, Sun C, Li H, Wang W, Zhai Y, Zhu Y, Liu Y. Functionalized chitosan hydrogel promotes osseointegration at the interface of3D printed titanium alloy scaffolds. Int J Biol Macromol 2024; 266:131169. [PMID: 38554899 DOI: 10.1016/j.ijbiomac.2024.131169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Autogenous bone transplantation is a prevalent clinical method for addressing bone defects. However, the limited availability of donor bone and the morbidity associated with bone harvesting have propelled the search for suitable bone substitutes. Bio-inspired scaffolds, particularly those fabricated using electron beam melting (EBM) deposition technology, have emerged as a significant advancement in this field. These 3D-printed titanium alloy scaffolds are celebrated for their outstanding biocompatibility and favorable elastic modulus. Thermosensitive chitosan hydrogel, which transitions from liquid to solid at body temperature, serves as a popular carrier in bone tissue engineering. Icariin (ICA), known for its efficacy in promoting osteoblast differentiation from bone marrow mesenchymal stem cells (BMSCs), plays a crucial role in this context. We developed a system combining a 3D-printed titanium alloy with a thermosensitive chitosan hydrogel, capable of local bone regeneration and integration through ICA delivery. Our in vitro findings reveal that this system can gradually release ICA, demonstrating excellent biocompatibility while fostering BMSC proliferation and osteogenic differentiation. Immunohistochemistry and Micro-CT analyses further confirm the effectiveness of the system in accelerating in vivo bone regeneration and enhancing osseointegration. This composite system lays a significant theoretical foundation for advancing local bone regeneration and integration.
Collapse
Affiliation(s)
- Chenyi Zhu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yudong Jia
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yanfeng Tang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Chaowei Guo
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Jianing Xi
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Chaojun Sun
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Hongjun Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Wenlong Wang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yuankun Zhai
- School of stomatology HENU, Kaifeng 475000, PR China
| | - Yingjie Zhu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China.
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China.
| |
Collapse
|
6
|
Mohammadzadeh M, Zarei M, Abbasi H, Webster TJ, Beheshtizadeh N. Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms. J Biol Eng 2024; 18:29. [PMID: 38649969 PMCID: PMC11036660 DOI: 10.1186/s13036-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
There is an increasing demand for innovative strategies that effectively promote osteogenesis and enhance bone regeneration. The critical process of bone regeneration involves the transformation of mesenchymal stromal cells into osteoblasts and the subsequent mineralization of the extracellular matrix, making up the complex mechanism of osteogenesis. Icariin's diverse pharmacological properties, such as anti-inflammatory, anti-oxidant, and osteogenic effects, have attracted considerable attention in biomedical research. Icariin, known for its ability to stimulate bone formation, has been found to encourage the transformation of mesenchymal stromal cells into osteoblasts and improve the subsequent process of mineralization. Several studies have demonstrated the osteogenic effects of icariin, which can be attributed to its hormone-like function. It has been found to induce the expression of BMP-2 and BMP-4 mRNAs in osteoblasts and significantly upregulate Osx at low doses. Additionally, icariin promotes bone formation by stimulating the expression of pre-osteoblastic genes like Osx, RUNX2, and collagen type I. However, icariin needs to be effectively delivered to bone to perform such promising functions.Encapsulating icariin within nanoplatforms holds significant promise for promoting osteogenesis and bone regeneration through a range of intricate biological effects. When encapsulated in nanofibers or nanoparticles, icariin exerts its effects directly at the cellular level. Recalling that inflammation is a critical factor influencing bone regeneration, icariin's anti-inflammatory effects can be harnessed and amplified when encapsulated in nanoplatforms. Also, while cell adhesion and cell migration are pivotal stages of tissue regeneration, icariin-loaded nanoplatforms contribute to these processes by providing a supportive matrix for cellular attachment and movement. This review comprehensively discusses icariin-loaded nanoplatforms used for bone regeneration and osteogenesis, further presenting where the field needs to go before icariin can be used clinically.
Collapse
Affiliation(s)
- Mahsa Mohammadzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Abbasi
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
7
|
Yang S, Zhang X, Liao X, Ding Y, Gan J. Icariin regulates RANKL-induced osteoclast differentiation via the ER α/ c-Src/RANK signaling. Biomed Mater 2024; 19:025049. [PMID: 38415738 DOI: 10.1088/1748-605x/ad2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Osteoporosis (OP) is a common metabolic bone disease. Excessive osteoclastic activity significantly contributes to the development of OP. Icariin (ICA) is a flavonol glycoside derived from herbal plants and possesses curative effects on postmenopausal OP and bone fracture. This study aimed to investigate the effects of ICA on osteoclast differentiation induced by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) and the involvement of estrogen receptorα(ERα) and RANK signaling cascade in this process. RANKL was used to induce the differentiation of RAW264.7 cells to into osteoclasts. Small interfering RNA technique was used to knockdown ERαin cells. Cell counting kit-8 assay was performed to determine the cytotoxicity of ICA. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells was quantified by TRAP staining. RANKL induced the differentiation of RAW264.7 cells into osteoclasts, while ICA abolished the pro-osteoporotic effect of RANKL. Moreover, ERαknockdown abolished the effects of ICA on RANKL-induced osteoclastogenesis. Further exploration revealed that ICA inhibited the phosphorylation ofc-Src in osteoclasts via regulating ERα, while inactivation ofc-Src reversed ERαknockdown-promoted osteoclastogenesis. Lastly, ICA inhibited the activation of the mitogen-activated protein kinase signaling pathway and downregulated the expressions of target osteoclastogenic proteins in RANKL-treated RAW 264.7 cells, while ERαknockdown almost completely diminished the effects of ICA. ICA inhibited RANKL-induced osteoclast differentiation via regulating the ERα/c-Src/RANK signaling. These findings elucidated a novel mechanism by which ICA exerts an anti-osteoporotic effect.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Pharmacy, Jiujiang University Affiliated Hospital, Jiujiang 332000, People's Republic of China
| | - Xiaocui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Jiujiang University Affiliated Hospital, Jiujiang 332000, People's Republic of China
| | - Xiaofei Liao
- Department of Pharmacy, Ganzhou People's Hospital, Ganzhou 341000, People's Republic of China
| | - Yi Ding
- Department of Spine Surgery, Ganzhou People's Hospital, Ganzhou 341000, People's Republic of China
| | - Juwen Gan
- Department of Pulmonary and Critical Care Medicine, Ganzhou People's Hospital Ganzhou People's Hospital, Ganzhou 341000, People's Republic of China
| |
Collapse
|
8
|
Liu H, Ye J, Hu H, Song Y, Qiang H, Wang J, Zhou L, Wang X, Fei X, Zhu M. 3D stem cell spheroids with urchin-like hydroxyapatite microparticles enhance osteogenesis of stem cells. J Mater Chem B 2024; 12:1232-1243. [PMID: 38165170 DOI: 10.1039/d3tb02453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cell therapy (also known as cell transplantation) has been considered promising as a next-generation living-cell therapy strategy to surpass the effects of traditional drugs. However, their practical clinical uses and product conversion are hampered by the unsatisfied viability and efficacy of the transplanted cells. Herein, we propose a synergistic enhancement strategy to address these issues by constructing 3D stem cell spheroids integrated with urchin-like hydroxyapatite microparticles (uHA). Specifically, cell-sized uHA microparticles were synthesized via a simple hydrothermal method using glutamic acid (Glu, E) as the co-template with good biocompatibility and structural antimicrobial performance (denoted as E-uHA). Combining with a hanging drop method, stem cell spheroids integrated with E-uHA were successfully obtained by culturing bone marrow mesenchymal stem cells (BMSCs) with a low concentration of the E-uHA suspensions (10 μg mL-1). The resulting composite spheroids of BMSCs/E-uHA deliver a high cellular viability, migration activity, and a superior osteogenic property compared to the 2D cultured counterpart or other BMSC spheroids. This work provides an effective strategy for integrating a secondary bio-functional component into stem cell spheroids for designing more cell therapy options with boosted cellular viability and therapeutic effect.
Collapse
Affiliation(s)
- Hongmei Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jianxin Ye
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hui Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yuheng Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Huijun Qiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Junjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
9
|
Chen M, Lu L, Cheng D, Zhang J, Liu X, Zhang J, Zhang T. Icariin Promotes Osteogenic Differentiation in a Cell Model with NF1 Gene Knockout by Activating the cAMP/PKA/CREB Pathway. Molecules 2023; 28:5128. [PMID: 37446790 DOI: 10.3390/molecules28135128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Neurofibromatosis type 1 is a rare autosomal dominant genetic disorder, with up to 50% of patients clinically displaying skeletal defects. Currently, the pathogenesis of bone disorders in NF1 patients is unclear, and there are no effective preventive and treatment measures. In this study, we found that knockout of the NF1 gene reduced cAMP levels and osteogenic differentiation in an osteoblast model, and icariin activated the cAMP/PKA/CREB pathway to promote osteoblast differentiation of the NF1 gene knockout cell model by increasing intracellular cAMP levels. The PKA selective inhibitor H89 significantly impaired the stimulatory effect of icariin on osteogenesis in the NF1 cell model. In this study, an osteoblast model of NF1 was successfully constructed, and icariin was applied to the cell model for the first time. The results will help to elucidate the molecular mechanism of NF1 bone disease and provide new ideas for the clinical prevention and treatment of NF1 bone disease and drug development in the future.
Collapse
Affiliation(s)
- Meng Chen
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Shandong Qidu Pharmaceutical Co., Ltd., Shandong Provincial Key Laboratory of Neuroprotective Drugs, Zibo 255400, China
| | - Lianhua Lu
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Dong Cheng
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Jing Zhang
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jianli Zhang
- Shandong Qidu Pharmaceutical Co., Ltd., Shandong Provincial Key Laboratory of Neuroprotective Drugs, Zibo 255400, China
| | - Tianliang Zhang
- Shandong Center for Disease Control and Prevention, Jinan 250014, China
| |
Collapse
|
10
|
Choi D, Kang W, Park S, Son B, Park T. Identification of Glucocorticoid Receptor Target Genes That Potentially Inhibit Collagen Synthesis in Human Dermal Fibroblasts. Biomolecules 2023; 13:978. [PMID: 37371558 DOI: 10.3390/biom13060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.
Collapse
Affiliation(s)
- Dabin Choi
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Wesuk Kang
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Soyoon Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bomin Son
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
11
|
Xie L, Feng E, Li S, Chai H, Chen J, Li L, Ge J. Comparisons of gene expression between peripheral blood mononuclear cells and bone tissue in osteoporosis. Medicine (Baltimore) 2023; 102:e33829. [PMID: 37335694 PMCID: PMC10194530 DOI: 10.1097/md.0000000000033829] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2023] [Indexed: 06/21/2023] Open
Abstract
Osteoporosis (OP) is one of the major public health problems in the world. However, the biomarkers between the peripheral blood mononuclear cells (PBMs) and bone tissue for prognosis of OP have not been well characterized. This study aimed to explore the similarities and differences of the gene expression profiles between the PBMs and bone tissue and identify potential genes, transcription factors (TFs) and hub proteins involved in OP. The patients were enrolled as an experimental group, and healthy subjects served as normal controls. Human whole-genome expression chips were used to analyze gene expression profiles from PBMs and bone tissue. And the differentially expressed genes (DEGs) were subsequently studied using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The above DEGs were constructed into protein-protein interaction network. Finally, TF-DEGs regulation networks were constructed. Microarray analysis revealed that 226 DEGs were identified between OP and normal controls in the PBMs, while 2295 DEGs were identified in the bone tissue. And 13 common DEGs were obtained by comparing the 2 tissues. The Gene Ontology analysis indicated that DEGs in the PBMs were more involved in immune response, while DEGs in bone were more involved in renal response and urea transmembrane transport. And the Kyoto Encyclopedia of Genes and Genomes analysis indicated almost all of the pathways in the PBMs were overlapped with those in the bone tissue. Furthermore, protein-protein interaction network presented 6 hub proteins: PI3K1, APP, GNB5, FPR2, GNG13, and PLCG1. APP has been found to be associated with OP. Finally, 5 key TFs were identified by TF-DEGs regulation networks analysis (CREB1, RUNX1, STAT3, CREBBP, and GLI1) and were supposed to be associated with OP. This study enhanced our understanding of the pathogenesis of OP. PI3K1, GNB5, FPR2, GNG13, and PLCG1 might be the potential targets of OP.
Collapse
Affiliation(s)
- Lihua Xie
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Eryou Feng
- Department of Arthrosis Surgery, Fuzhou Second Hospital, Fuzhou, China
| | - Shengqiang Li
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Hao Chai
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Juan Chen
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| | - Li Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jirong Ge
- Key Research Laboratory of Osteoporosis Syndrome Genomics, Fujian Academy of Chinese Medical Sciences, Fuzhou, China
| |
Collapse
|
12
|
Yang X, Shi L, Li A, Gao F, Sun W, Li Z. Phase-contrast imaging with synchrotron hard X-ray reveals the effect of icariin on bone tissue morphology and microstructure in rabbits with early glucocorticoid-induced osteonecrosis of the femoral head. Front Cell Dev Biol 2023; 11:1155532. [PMID: 37215078 PMCID: PMC10192577 DOI: 10.3389/fcell.2023.1155532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Phase-contrast imaging (PCI) with synchrotron hard X-ray was used to observe the changes in bone tissue morphology and microstructure in rabbit models of early glucocorticoid-induced osteonecrosis of the femoral head (ONFH), and to evaluate the intervention effect of Icariin. Methods: Fifty mature New Zealand rabbits (weighing 2.5-3.0 kg) were randomly divided into a control group (n = 10), a glucocorticoid group (n = 20), and an Icariin group (n = 20). The glucocorticoid group and the Icariin group were sequentially injected with lipopolysaccharide (LPS) and methylprednisolone (MPS) to establish a glucocorticoid-induced ONFH animal model. The Icariin group was given Icariin solution when methylprednisolone was injected for the first time, and the control group and glucocorticoid group were given the same amount of normal saline. Animals were sacrificed after 6 weeks, and bilateral femoral head specimens were taken for research. The right femoral head was observed by PCI with synchrotron hard X-ray technology, and the left femoral head was verified by Micro-CT scanning and HE staining. Results: Forty-three animals (nine in the control group, sixteen in the glucocorticoid group, and eighteen in the Icariin group) were included in the study. PCI with synchrotron hard X-ray revealed that the trabecular bone in the glucocorticoid group was thinned, broken, and structurally damaged, whereas the trabecular bone in the Icariin group had normal volume, thickness, and a relatively intact structure. Micro-CT scan reconstruction and HE staining were used to verify the reliability of this technique in identifying osteonecrosis. Conclusion: The effects of Icariin were observed in an early glucocorticoid-induced ONFH rabbit model using PCI with synchrotron hard X-ray. Icariin weakens the destructive effect of glucocorticoids on bone tissue structure, improves bone tissue morphology, and stabilizes bone microstructure. This technique may provide a definitive, non-invasive alternative to histological examination for the diagnosis of early ONFH.
Collapse
Affiliation(s)
- Xu Yang
- Department of Orthopedics, Peking University China-Japan Friendship Clinical Hospital, Beijing, China
- Health Science Centre, Peking University, Beijing, China
| | - Lijun Shi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aifeng Li
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuqiang Gao
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, China
| | - Wei Sun
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, China
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zirong Li
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
13
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
14
|
Zhang Y, Wang L, Zhao B. Preparation of drug-loaded microspheres with a core-shell structure using silk fibroin and poly lactic-co-glycolic acid and their application. Biomed Mater Eng 2023; 34:503-523. [PMID: 37424458 DOI: 10.3233/bme-230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Advances in bone tissue engineering offer novel options for the regeneration of bone tissue. In the current clinical treatment, the method of accelerating bone tissue regeneration rate by promoting early angiogenesis has been widely accepted. OBJECTIVE This study aimed to develop a long-acting slow-release system using the pro-angiogenic drug tetramethylpyrazine (TMPZ) and pro-osteogenic drug icariin (ICA), which can be administered locally to achieve the sequential release of TMPZ and ICA for better clinically efficiency in the treatment of bone defects. METHODS This study aimed to prepare microspheres with a core-shell structure using two polymers, poly lactic-co-glycolic acid and silk fibroin, by coaxial electrostatic spraying. Based on the therapeutic model for bone defects, the pro-angiogenic drug TMPZ and pro-osteogenic drug ICA were encapsulated in the shell and core layers of the microspheres, respectively. Subsequently, TMPZ and ICA were released sequentially to promote early angiogenesis and late osteogenesis, respectively, at the site of the bone defect. The optimal preparation parameters for preparing the drug-loaded microspheres were identified using the univariate controlled variable method. Additionally, microsphere morphology and core-shell structure, such as physical properties, drug-loading properties, in vitro degradation and drug release patterns, were characterised using scanning electron microscope and laser scanning confocal microscopy. RESULTS The microspheres prepared in this study were well-defined and had a core-shell structure. The hydrophilicity of the drug-loaded microspheres changed compared to the no-load microspheres. Furthermore, in vitro results indicated that the drug-loaded microspheres with high encapsulation and loading efficiencies exhibited good biodegradability and cytocompatibility, slowly releasing the drug for up to three months. CONCLUSION The development of the drug delivery system with a dual-step release mechanism has potential clinical applications and implications in the treatment of bone defects.
Collapse
Affiliation(s)
- Yi Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Long L, Wang X, Lei Y, Guo S, Wang C, Dai W, Lin B, Xie M, Xu H, Li S. Icariin: A Potential Alternative Against Osteoporosis. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a metabolic skeletal disorder characterized by increased fragility and fracture risk as s result of reduced bone mineral density and microstructural destruction and caused a heavy burden on families and society. Current medicines, on the other hand, have some limitations, with side effects and doubts regarding long-term efficacy being highlighted. Studies seeking for natural constituents as potential treatment options therefore come into focus. Icariin is a phytochemical derived from a traditional Chinese medicine, Herba epimedium, that has been used to treat orthopedic disorders in ancient China for thousands of years, including osteoporosis, osteoarthritis, and fracture. Icariin belongs to a category of prenylated flavonoids and has been shown to help reduce osteoporosis bone loss while having relatively low side effects. Icariin's anti-osteoporosis properties manifest in a variety of ways, like promoting osteogenesis, suppressing osteoclastogenesis and bone resorption, regulating migration, proliferation, and differentiation of mesenchymal stem cells, enhancing angiogenesis, anti-inflammation, and antioxidation. These procedures entail a slew of critical signaling pathways, such as PPARγ, ERα/AKT/β-catenin, and MAPK. Therefore, icariin can be an applicable alternative to improve osteoporosis although the underlying mechanisms have yet to be fully understood. In this study, we searched using the terms “icariin” and “osteoporosis,” and included 64 articles meeting the inclusion criteria and reviewed the research of icariin in anti-osteoporosis over the last 10 years, and discussed new prospects for future study. Therefore, this review may provide some references for further studies.
Collapse
Affiliation(s)
- Longhai Long
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoqiang Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Yang Lei
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dai
- Geriatric Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Birong Lin
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Mingzhong Xie
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Department of Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Oprita EI, Iosageanu A, Craciunescu O. Progress in Composite Hydrogels and Scaffolds Enriched with Icariin for Osteochondral Defect Healing. Gels 2022; 8:648. [PMID: 36286148 PMCID: PMC9602414 DOI: 10.3390/gels8100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osteochondral structure reconstruction by tissue engineering, a challenge in regenerative medicine, requires a scaffold that ensures both articular cartilage and subchondral bone remodeling. Functional hydrogels and scaffolds present a strategy for the controlled delivery of signaling molecules (growth factors and therapeutic drugs) and are considered a promising therapeutic approach. Icariin is a pharmacologically-active small molecule of prenylated flavonol glycoside and the main bioactive flavonoid isolated from Epimedium spp. The in vitro and in vivo testing of icariin showed chondrogenic and ostseoinductive effects, comparable to bone morphogenetic proteins, and suggested its use as an alternative to growth factors, representing a low-cost, promising approach for osteochondral regeneration. This paper reviews the complex structure of the osteochondral tissue, underlining the main aspects of osteochondral defects and those specifically occurring in osteoarthritis. The significance of icariin's structure and the extraction methods were emphasized. Studies revealing the valuable chondrogenic and osteogenic effects of icariin for osteochondral restoration were also reviewed. The review highlighted th recent state-of-the-art related to hydrogels and scaffolds enriched with icariin developed as biocompatible materials for osteochondral regeneration strategies.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, 296, Splaiul Independentei, 060031 Bucharest, Romania
| |
Collapse
|
17
|
Zhen Hua, Cheng J, Shi DJ, Chen JW, Peng HC, Liu MM. Fabrication of Bone Morphogenic Protein-2 and Icariin-Containing Sustained-Release Microcapsule and Evaluation of its Osteogenic Differentiation Capacity in MC3T3-E1 Cells. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Hao J, Bei J, Li Z, Han M, Ma B, Ma P, Zhou X. Qing`e Pill Inhibits Osteoblast Ferroptosis via ATM Serine/Threonine Kinase (ATM) and the PI3K/AKT Pathway in Primary Osteoporosis. Front Pharmacol 2022; 13:902102. [PMID: 35865965 PMCID: PMC9294279 DOI: 10.3389/fphar.2022.902102] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoporosis (OP) is an aging-related disease that is the main etiology of fragility fracture. Qing’e Pill (QEP) is a mixture of traditional Chinese medicine (TCM) consisting of Eucommia ulmoides Oliv., Psoralea corylifolia L., Juglans regia L., and Allium sativum L. QEP has an anti-osteoporosis function, but the underlying mechanism remains unclear. In this study, online databases were employed to determine the chemical compounds of QEP and potential target genes in osteoporosis. Potential pathways associated with genes were defined by Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases. A compound–target–disease network was constructed. Hub genes screened through Cytoscape were intersected with the FerrDB database. The potential key genes were validated in HFOB 1.19 cells, and rat models were ovariectomized through Western blot, RT-qPCR, ELISA, HE staining, immunohistochemistry, and immunofluorescence analyses. The intersection targets of QEP and osteoporosis contained 121 proteins, whereas the target–pathway network included 156 pathways. We filtered five genes that stood out in the network analysis for experimental verification. The experiments validated that QEP exerted therapeutic effects on osteoporosis by inhibiting ferroptosis and promoting cell survival via the PI3K/AKT pathway and ATM. In conclusion, combining the application of network analysis and experimental verification may provide an efficient method to validate the molecular mechanism of QEP on osteoporosis.
Collapse
Affiliation(s)
- Jian Hao
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Jian Hao, ; Xianhu Zhou,
| | - Jiaxin Bei
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenhan Li
- School of Clinical, Wannan Medical College, Wuhu, China
| | - Mingyuan Han
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Boyuan Ma
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Pengyi Ma
- Department of Orthopaedic, Graduate School, Tianjin Medical University, Tianjin, China
| | - Xianhu Zhou
- Orthopedics Department, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- *Correspondence: Jian Hao, ; Xianhu Zhou,
| |
Collapse
|
19
|
Li B, Lima MRM, Nie Y, Xu L, Liu X, Yuan H, Chen C, Dias AC, Zhang X. HPLC-DAD Fingerprints Combined With Multivariate Analysis of Epimedii Folium From Major Producing Areas in Eastern Asia: Effect of Geographical Origin and Species. Front Pharmacol 2021; 12:761551. [PMID: 34899314 PMCID: PMC8662750 DOI: 10.3389/fphar.2021.761551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The growth location and plant variety may influence the active components and biological activities of plants used in phytomedicine. In this study, nine sets of different Epimedii Folium, from different representative cultivation locations and Epimedium species, were collected for comparison, using HPLC-DAD combined with multivariate analysis. The objective was to investigate the influence of geographical origin and Epimedium species on the quality of Epimedii Folium, and provide applicable guidance for cultivation and quality control of Epimedii Folium. Several Epimedium spp. sets were used to establish the HPLC-DAD fingerprints and 91 peaks (compounds) were selected for the multivariate analysis. Major compounds were analyzed by HPLC-DAD combined with principal component analysis (PCA). HPLC quantitative analysis of known bioactive compounds was performed. Application of PCA to HPLC data showed that Epimedium samples sharing the same geographical origin or species clustered together, indicating that both species and geographical origin have impacts on the quality of Epimedii Folium. The major bioactive flavonoid compounds, epimedin C, icariin and baohuoside I, were identified and quantified. The concentration of bioactive compounds was significantly influenced both by species and geographical origin. E. sagittatum from Sichuan showed the highest content of bioactive compounds. The results showed that both Epimedium species and geographical origin have strong impact into quality of Epimedii Folium. HPLC data combined with multivariate analysis is a suitable approach to inform the selection of cultivation areas and choose Epimedium spp. most suitable for different geographical areas, resulting in improved quality of Epimedii Folium.
Collapse
Affiliation(s)
- Ben Li
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Marta R M Lima
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Yuhao Nie
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Long Xu
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Xiang Liu
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongchao Yuan
- Jinhuifang Traditional Chinese Medicine Technology Co., Ltd, Hanzhong, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Alberto Cp Dias
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.,Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Kim EN, Nabende WY, Jeong H, Hahn D, Jeong GS. The Marine-Derived Natural Product Epiloliolide Isolated from Sargassum horneri Regulates NLRP3 via PKA/CREB, Promoting Proliferation and Anti-Inflammatory Effects of Human Periodontal Ligament Cells. Mar Drugs 2021; 19:388. [PMID: 34356813 PMCID: PMC8304756 DOI: 10.3390/md19070388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Currently, periodontitis treatment relies on surgical operations, anti-inflammatory agents, or antibiotics. However, these treatments cause pain and side effects, resulting in a poor prognosis. Therefore, in this study, we evaluated the impact of the compound epiloliolide isolated from Sargassum horneri on the recovery of inflammatory inhibitors and loss of periodontal ligaments, which are essential treatment strategies for periodontitis. Here, human periodontal ligament cells stimulated with PG-LPS were treated with the compound epiloliolide, isolated from S. horneri. In the results of this study, epiloliolide proved the anti-inflammatory effect, cell proliferation capacity, and differentiation potential of periodontal ligament cells into osteoblasts, through the regulation of the PKA/CREB signaling pathway. Epiloliolide effectively increased the proliferation and migration of human periodontal ligament cells without cytotoxicity and suppressed the protein expression of proinflammatory mediators and cytokines, such as iNOS, COX-2, TNF-α, IL-6, and IL-1β, by downregulating NLRP3 activated by PG-LPS. Epiloliolide also upregulated the phosphorylation of PKA/CREB proteins, which play an important role in cell growth and proliferation. It was confirmed that the anti-inflammatory effect in PG-LPS-stimulated large cells was due to the regulation of PKA/CREB signaling. We suggest that epiloliolide could serve as a potential novel therapeutic agent for periodontitis by inhibiting inflammation and restoring the loss of periodontal tissue.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea;
| | - Woguti Yvonne Nabende
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea; (W.Y.N.); (H.J.)
| | - Hyeyoon Jeong
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea; (W.Y.N.); (H.J.)
| | - Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea; (W.Y.N.); (H.J.)
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea;
| |
Collapse
|
21
|
Huai Y, Zhang WJ, Wang W, Dang K, Jiang SF, Li DM, Li M, Hao Q, Miao ZP, Li Y, Qian AR. Systems pharmacology dissection of action mechanisms for herbs in osteoporosis treatment. CHINESE HERBAL MEDICINES 2021; 13:313-331. [PMID: 36118922 PMCID: PMC9476722 DOI: 10.1016/j.chmed.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Objective Osteoporosis has become the biggest cause of non-fatal health issue. Currently, the limitations of traditional anti-osteoporosis drugs such as long-term ill-effects and drug resistance, have raised concerns toward complementary and alternative therapies, particularly herbal medicines and their natural active compounds. Thus, this study aimed to provide an integrative analysis of active chemicals, drug targets and interacting pathways of the herbs for osteoporosis treatment. Methods Here, we introduced a systematic pharmacology model, combining the absorption, distribution, metabolism, and excretion (ADME) screening model, drug targeting and network pharmacology, to probe into the therapeutic mechanisms of herbs in osteoporosis. Results We obtained 86 natural compounds with favorable pharmacokinetic profiles and their 58 targets from seven osteoporosis-related herbs. Network analysis revealed that they probably synergistically work through multiple mechanisms, such as suppressing inflammatory response, maintaining bone metabolism or improving organism immunity, to benefit patients with osteoporosis. Furthermore, experimental results showed that all the five compounds (calycosin, asperosaponin VI, hederagenin, betulinic acid and luteolin) enhanced osteoblast proliferation and differentiation in vitro, which corroborated the validity of this system pharmacology approach. Notably, gentisin and aureusidin among the identified compounds were first predicted to be associated with osteoporosis. Conclusion Herbs and their natural compounds, being characterized as the classical combination therapies, might be engaged in multiple mechanisms to coordinately improve the osteoporosis symptoms. This work may contribute to offer novel strategies and clues for the therapy and drug discovery of osteoporosis and other complex diseases.
Collapse
|
22
|
Yao W, Wang K, Wang X, Li X, Dong J, Zhang Y, Ding X. Icariin ameliorates endothelial dysfunction in type 1 diabetic rats by suppressing ER stress via the PPARα/Sirt1/AMPKα pathway. J Cell Physiol 2021; 236:1889-1902. [PMID: 32770555 DOI: 10.1002/jcp.29972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Icariin (ICA), as a flavonoid glycoside, is associated with the improvement of vascular complications in diabetes. However, its protective mechanisms remain to be well-established. Here, we tested the hypothesis that ICA attenuates vascular endothelial dysfunction by inhibiting endoplasmic reticulum (ER) stress in type 1 diabetes. In streptozotocin-induced diabetic rats, ICA positively affected acetylcholine-induced vasodilation and phenylephrine-induced vasoconstriction in aortas. ICA treatment significantly attenuated ER stress in diabetic rats and high-glucose induced human umbilical vein endothelial cells. Incubation with ICA in vitro attenuated vascular reactivity in diabetic rats, which was blocked by the ER stress inducer, and peroxisome proliferator-activated receptor α (PPARα), sirtuin1 (Sirt1), or AMP-activated protein kinase-α (AMPKα) inhibitors. Western blot showed that ICA activated the PPARα/Sirt1/AMPKα pathway, which contributed to reducing ER stress and activating endothelial nitric oxide synthase in vivo and vitro. Our results implicate that ICA normalizes ER stress to attenuate endothelial dysfunction by the regulation of the PPARα/Sirt1/AMPKα pathway.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jieyan Dong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yusheng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Sharifi S, Moghaddam FA, Abedi A, Maleki Dizaj S, Ahmadian S, Abdolahinia ED, Khatibi SMH, Samiei M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors 2020; 46:874-893. [PMID: 33037744 DOI: 10.1002/biof.1682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Medicinal plants have always been utilized for the prevention and treatment of the spread of different diseases all around the world. To name some traditional medicine that has been used over centuries, we can refer to phytochemicals such as naringin, icariin, genistein, and resveratrol gained from plants. Osteogenic differentiation and mineralization of stem cells can be the result of specific bioactive compounds from plants. One of the most appealing choices for therapy can be mesenchymal stem cells (MSCs) because it has a great capability of self-renewal and differentiation into three descendants, namely, endoderm, mesoderm, and ectoderm. Stem cell gives us the glad tidings of great advances in tissue regeneration and transplantation field for treatment of diseases. Using plant bioactive phytochemicals also holds tremendous promises in treating diseases such as osteoporosis. The purpose of the present review article thus is to investigate what are the roles and consequences of phytochemicals on osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Atefeh Abedi
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center of Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Investigating the In Vitro Osteogenic Properties of the Inclusion Nanocarrier of Icariin with Beta-Cyclodextrin-Alginate. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we created an inclusion nanocarrier of icariin (ICA) and β-cyclodextrin-alginate conjugate (ICA/β-CD-ALG) and determined its in vitro osteogenic ability on MC3T3-E1 cells. The morphological shape of the prepared β-CD-ALG with or without ICA was nano-sized and round. The use of β-CD-ALG achieved a sustained ICA release for up to 7 days. In vitro studies found that ICA/β-CD-ALG had a greater potential in osteogenesis on MC3T3-E1 cells compared to β-CD-ALG by exhibiting both higher alkaline phosphatase levels and the amount of calcium deposits. Moreover, ICA/β-CD-ALG greatly increased the levels of osteogenesis markers including osteocalcin (OCN) and osteopontin (OPN). Our results suggest that ICA/β-CD-ALG plays a significant role in cellular osteogenic activity.
Collapse
|
25
|
Shi L, Mao T, Luo P, Li T, Gao F, Sun W, Li Z. [Effect of icariin on early steroid-induced osteonecrosis of the femoral head in rabbits]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:206-212. [PMID: 32030953 DOI: 10.7507/1002-1892.201905112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective To explore the effect of icariin on early steroid-induced osteonecrosis of the femoral head in rabbits. Methods Fifty mature New Zealand rabbits (weighing, 2.5-3.0 kg) were randomly divided into control group ( n=10), model group ( n=20), and experimental group ( n=20). The rabbits of model and experimental groups were injected with lipopolysaccharide and methylprednisolone to establish the animal model of early steroid-induced osteonecrosis of the femoral head. The rabbits of experimental group were feeded with icariin solution once a day for 6 weeks since the first injection of methylprednisolone, whereas the rabbits of control and model groups were given normal saline at the same time points. The left femoral heads were removed after 6 weeks and gross morphological features were evaluated. Micro-CT scan was performed to analyze the trabecular microstructure with the following parameters: trabecular bone volume to total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Tn), and trabecular separation (Tb.Sp). The Micro-CT scan was also converted to three-dimensional reconstruction images for observation. HE staining was applied to observe the trabecular structure and morphological changes of osteocytes and marrow adipocytes. It was also used to determine whether the samples of femoral heads occurred osteonecrosis based on the criteria for pathological diagnosis, and calculate the rate of empty lacunae. Results Seven rabbits died during the study, and 9, 16, and 18 rabbits in the control, model, and experimental groups, respectively, enrolled the final analysis. Compared with control group, the femoral head collapse and trabecular breaks were more obvious, and the trabeculae were sparse with irregular arrangement in the model group according to the results of gross observation, Micro-CT scan, and three-dimensional reconstruction images. But in the experimental group, the surface of femoral head was slight shrinking without obvious collapse, and the degeneration of trabecular structure was mild. According to bone microstructures analysis, the Tb.N, Tb.Tn, and BV/TV of femoral head in model and experimental groups were lower than those in control group, while the Tb.Sp in the model and experimental groups were significantly higher. The Tb.N, Tb.Tn, and BV/TV of femoral head in experimental group were higher than those in model group, while the Tb.Sp in the experimental group was significantly lower. The differences between groups were all significant ( P<0.05). In the model group, HE staining showed that the number of osteocytes reduced, the number of empty lacunae increased, and the marrow adipocytes piled up in the space between femoral trabeculae, some even mashed together like a cyst. In the experimental group, the trabecular structure was still relatively complete compared with model group, no obvious apoptosis of osteocytes was observed, the size and number of adipocytes were basically normal. None of the animals in control group occurred osteonecrosis of the femoral head based on the criteria for pathological diagnosis, and the incidence of osteonecrosis were 81.3% (13/16) in the model group and 66.7% (12/18) in the experimental group, and the difference was not significant ( P=0.448). The rate of empty lacunae of osteonecrotic femoral heads in the model group was 33.1%±1.4%, which was higher than that in experimental group (18.9%±0.8%) and in control group (12.7%±1.5%), and the differences between groups were significant ( P<0.05). Conclusion The icariin has a protective effect on the early steroid-induced osteonecrosis of the femoral head in rabbits, which can decrease osteocytes apoptosis, improve the bone microstructure, and delay such disease processes.
Collapse
Affiliation(s)
- Lijun Shi
- Department of Orthopedics, Graduate School of Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - Tianli Mao
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, P.R.China
| | - Pan Luo
- Department of Orthopedics, Graduate School of Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - Tengqi Li
- Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, P.R.China
| | - Fuqiang Gao
- Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - Wei Sun
- Department of Orthopedics, Graduate School of Peking Union Medical College, China-Japan Friendship Hospital, Beijing, 100029, P.R.China;Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| | - Zirong Li
- Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing, 100029, P.R.China
| |
Collapse
|