1
|
Elagawany M, Abdel Ghany LMA, Ibrahim TS, Alharbi AS, Abdel-Aziz MS, El-labbad EM, Ryad N. Development of certain benzylidene coumarin derivatives as anti-prostate cancer agents targeting EGFR and PI3Kβ kinases. J Enzyme Inhib Med Chem 2024; 39:2311157. [PMID: 38348846 PMCID: PMC10866054 DOI: 10.1080/14756366.2024.2311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Novel coumarin derivatives were synthesised and tested for their cytotoxicity against human cancer cells (PC-3 and MDA-MB-231). Compounds 5, 4b, and 4a possessed potent cytotoxic activity against PC-3 cells with IC50 3.56, 8.99, and 10.22 µM, respectively. Compound 4c displayed cytotoxicity more than erlotinib in the MDA-MB-231 cells with IC50 8.5 µM. Moreover, compound 5 exhibited potent inhibitory activity on EFGR with IC50 0.1812 µM, as well as PI3Kβ inhibitory activity that was twofold higher than LY294002, suggesting that this compound has a dual EGFR and PI3Kβ inhibiting activity. Docking aligns with the in vitro results and sheds light on the molecular mechanisms underlying dual targeting. Furthermore, compound 5 decreased AKT and m-TOR expression in PC-3 cells, showing that it specifically targets these cells via the EGFR/PI3K/Akt/m-TOR signalling pathway. Simultaneously, compound 5 caused cell cycle arrest at S phase and induced activation of both intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Mohamed Elagawany
- Department of Pharmaceutical Chemistry, Damanhour University, Damanhour, Buhaira, Egypt
| | - Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrhman S. Alharbi
- Department of Chemistry, College of Science and Arts, Shaqra University, Sajir, Shaqra, Saudi Arabia
| | - Mohamed S. Abdel-Aziz
- Microbial Chemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| | - Eman M. El-labbad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Noha Ryad
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Giza, Egypt
| |
Collapse
|
2
|
Şeker Karatoprak G, Dumlupınar B, Celep E, Kurt Celep I, Küpeli Akkol E, Sobarzo-Sánchez E. A comprehensive review on the potential of coumarin and related derivatives as multi-target therapeutic agents in the management of gynecological cancers. Front Pharmacol 2024; 15:1423480. [PMID: 39364049 PMCID: PMC11447453 DOI: 10.3389/fphar.2024.1423480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Current treatments for gynecological cancers include surgery, radiotherapy, and chemotherapy. However, these treatments often have significant side effects. Phytochemicals, natural compounds derived from plants, offer promising anticancer properties. Coumarins, a class of benzopyrone compounds found in various plants like tonka beans, exhibit notable antitumor effects. These compounds induce cell apoptosis, target PI3K/Akt/mTOR signaling pathways, inhibit carbonic anhydrase, and disrupt microtubules. Additionally, they inhibit tumor multidrug resistance and angiogenesis and regulate reactive oxygen species. Specific coumarin derivatives, such as auraptene, praeruptorin, osthole, and scopoletin, show anti-invasive, anti-migratory, and antiproliferative activities by arresting the cell cycle and inducing apoptosis. They also inhibit metalloproteinases-2 and -9, reducing tumor cell migration, invasion, and metastasis. These compounds can sensitize tumor cells to radiotherapy and chemotherapy. Synthetic coumarin derivatives also demonstrate potent antitumor and anticancer activities with minimal side effects. Given their diverse mechanisms of action and minimal side effects, coumarin-class phytochemicals hold significant potential as therapeutic agents in gynecological cancers, potentially improving treatment outcomes and reducing side effects. This review will aid in the synthesis and development of novel coumarin-based drugs for these cancers.
Collapse
Affiliation(s)
| | - Berrak Dumlupınar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Okan University, İstanbul, Türkiye
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydinlar University, Atasehir, Istanbul, Türkiye
| | - Inci Kurt Celep
- Department of Biotechnology, Faculty of Pharmacy, Istanbul Okan University, Istanbul, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Tong J, Shu J, Wang Y, Qi Y, Wang Y. A bioactive sprite: Recent advances in the application of vinyl sulfones in drug design and organic synthesis. Life Sci 2024; 352:122904. [PMID: 38986895 DOI: 10.1016/j.lfs.2024.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Vinyl sulfones, with their exceptional chemical properties, are known as the "chameleons" of organic synthesis and are widely used in the preparation of various sulfur-containing structures. However, their most alluring feature lies in their biological activity. The vinyl sulfone skeleton is ubiquitous in natural products and drug molecules and boasts a unique molecular structure and drug activity when compared to conventional drug molecules. As a result, vinyl sulfones have been extensively studied, playing a critical role in organic synthesis and pharmaceutical chemistry. In this review, we present a comprehensive analysis of the recent applications of vinyl sulfone structures in drug design, biology, and chemical synthesis. Furthermore, we explore the prospects of vinyl sulfones in diverse fields, offering insight into their potential future applications.
Collapse
Affiliation(s)
- Jiangtao Tong
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jiong Shu
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuhua Wang
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Yajuan Qi
- Hubei province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Yevale D, Teraiya N, Lalwani T, Dalasaniya M, Kapadiya K, Ameta RK, Sangani CB, Duan YT. PI3Kδ and mTOR dual inhibitors: Design, synthesis and anticancer evaluation of 3-substituted aminomethylquinoline analogues. Bioorg Chem 2024; 147:107323. [PMID: 38583254 DOI: 10.1016/j.bioorg.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Phosphatidylinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) have recently been identified as potential cancer targets. In our work, a new family of quinoline analogues was designed, developed, and evaluated as dual inhibitors of PI3Kδ/mTOR. The preliminary biological activity analysis led to the discovery of the lead compounds 5h and 5e. Compounds 5h and 5e exhibited excellent anti-tumor potency with IC50 of 0.26 µM and 0.34 µM against Ramos cells, respectively. Importantly, based on the enzymatic activity assay results, compounds 5h and 5e were identified as dual inhibitors of PI3Kδ and mTOR, with IC50 values of 0.042 µM and 0.056 µM for PI3Kδ and 0.059 µM and 0.073 µM for mTOR, respectively. Furthermore, these compounds showed superior selectivity for blocking PI3Kδ compared to other PI3K isoforms (α, β, and γ), supporting the concept of developing inhibitors that specifically target PI3Kδ/mTOR. The most effective compound 5h was chosen for additional biological testing. At a low dose of 0.5 µM, a western blot investigation confirmed the anticancer effects by inhibiting the PAM cascade, which in turn reduced downstream biomarkers pAkt (Ser473), pAkt (Thr308), and pRPS6 (Ser235/236). Furthermore, it increased apoptosis at the early (10.03 times) and late (17.95 times) stages in the Annexin-V assay as compared to the standard. In addition, the expression of p53, caspase-3, caspase-9, and the Bax/BCl-2 ratio were all significantly increased by compound 5h in the ELISA assay. Based on these results, it appears that 5h may activate the intrinsic apoptosis pathway, which in turn triggers cell death. Furthermore, the anticancer effects could be attributed to the inhibition of PI3Kδ/mTOR, as shown by docking interactions. Lastly, it demonstrated improved in vitro metabolic stability and passed the in silico ADMET/drug-likeness test. This profile recommends 5h for future in vivo PK-PD and efficacy investigations in animal cancer models.
Collapse
Affiliation(s)
- Digambar Yevale
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat 382023, India
| | - Twinkle Lalwani
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad 382213, Gujarat, India
| | - Mayur Dalasaniya
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad 382213, Gujarat, India
| | - Khushal Kapadiya
- BRCC Laboratory, Department of Chemistry, School of Science, RK University, Rajkot 360 020, Gujarat, India
| | - Rakesh Kumar Ameta
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India
| | - Chetan B Sangani
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India; Department of Chemistry, Government Science College Sector-15, Gandhinagar-382016, Gujarat University, Gujarat, India.
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
5
|
Singh A, Singh K, Kaur K, Singh A, Sharma A, Kaur K, Kaur J, Kaur G, Kaur U, Kaur H, Singh P, Bedi PMS. Coumarin as an Elite Scaffold in Anti-Breast Cancer Drug Development: Design Strategies, Mechanistic Insights, and Structure-Activity Relationships. Biomedicines 2024; 12:1192. [PMID: 38927399 PMCID: PMC11200728 DOI: 10.3390/biomedicines12061192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common cancer among women. Currently, it poses a significant threat to the healthcare system due to the emerging resistance and toxicity of available drug candidates in clinical practice, thus generating an urgent need for the development of new potent and safer anti-breast cancer drug candidates. Coumarin (chromone-2-one) is an elite ring system widely distributed among natural products and possesses a broad range of pharmacological properties. The unique distribution and pharmacological efficacy of coumarins attract natural product hunters, resulting in the identification of numerous natural coumarins from different natural sources in the last three decades, especially those with anti-breast cancer properties. Inspired by this, numerous synthetic derivatives based on coumarins have been developed by medicinal chemists all around the globe, showing promising anti-breast cancer efficacy. This review is primarily focused on the development of coumarin-inspired anti-breast cancer agents in the last three decades, especially highlighting design strategies, mechanistic insights, and their structure-activity relationship. Natural coumarins having anti-breast cancer efficacy are also briefly highlighted. This review will act as a guideline for researchers and medicinal chemists in designing optimum coumarin-based potent and safer anti-breast cancer agents.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | | | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA;
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Jaskirat Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Gurleen Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
| | - Uttam Kaur
- University School of Business Management, Chandigarh University, Gharuan 140413, Mohali, India;
| | - Harsimran Kaur
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Prabhsimran Singh
- Department of Pharmaceutical Chemistry, Khalsa College of Pharmacy, Amritsar 143005, Punjab, India; (H.K.); (P.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; (K.S.); (A.S.); (K.K.); (J.K.); (G.K.)
- Drug and Pollution Testing Laboratory, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
6
|
Furia E, Lettera V, Napoli A, Aiello D. Insights on Stability Constants and Structures of Complexes between Coumarin Derivatives and Pb(II) in Aqueous Media. Molecules 2024; 29:1911. [PMID: 38731402 PMCID: PMC11085526 DOI: 10.3390/molecules29091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
In the frame of a systematic study on the sequestering ability of natural antioxidants towards metal cations, here the complexation of coumarin-3-carboxilic acid (HCCA) with Pb(II) and the overall stability constants of the resulting complexes, at 37 °C and in 0.16 M NaClO4, are discussed. Reaction of Pb(ClO4)2 with HCCA in an aqueous medium at a pH range from 2 to 6 and various ratios (1:1-1:10) yielded the Pb-CCA complexes, which were characterized spectrometrically by laser desorption ionization mass spectrometry (LD-MS). LD-MS has provided the composition and structure of Pb-CCA species according to the speciation model proposed on the basis of the potentiometric data. The graphic representation of the complex's concentration curves is given by the distribution diagram, which provides a whole depiction of the species present in the solution at the selected pH ranges.
Collapse
Affiliation(s)
| | | | | | - Donatella Aiello
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy; (E.F.); (V.L.); (A.N.)
| |
Collapse
|
7
|
Dutta S, Mahalanobish S, Saha S, Mandal M, Begam S, Sadhukhan P, Ghosh S, Brahmachari G, Sil PC. Biological evaluation of the novel 3,3'-((4-nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) derivative as potential anticancer agents via the selective induction of reactive oxygen species-mediated apoptosis. Cell Signal 2023; 111:110876. [PMID: 37640193 DOI: 10.1016/j.cellsig.2023.110876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/02/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Selective initiation of programmed cell death in cancer cells than normal cells is reflected as an attractive chemotherapeutic strategy. In the current study, a series of synthetic bis-coumarin derivatives were synthesized possessing reactive oxygen species (ROS) modulating functional groups and examined in four cancerous and two normal cell lines for their cytotoxic ability using MTT assay. Among these compounds, 3 l emerged as the most promising derivative in persuading apoptosis in human renal carcinoma cells (SKRC-45) among diverse cancer cell lines. 3 l causes significantly less cytotoxicity to normal kidney cells compared to cisplatin. This compound was able to induce apoptosis and cell-cycle arrest by modulating the p53 mediated apoptotic pathways via the generation of ROS, decreasing mitochondrial membrane potential, and causing DNA fragmentation. Unlike cisplatin, the 3 l derivative was found to inhibit the nuclear localisation of NF-κB in SKRC-45 cells. It was also found to reduce the proliferation, survival and migration ability of SKRC-45 cells by downregulating COX-2/ PTGES2 cascade and MMP-2. In an in vivo tumor model, 3 l showed an anticancer effect by reducing the mean tumor mass, volume and inducing caspase-3 activation, without affecting kidney function. Further studies are needed to establish 3 l as a promising anti-cancer drug candidate.
Collapse
Affiliation(s)
- Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Mullicka Mandal
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Sanchari Begam
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Pritam Sadhukhan
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Goutam Brahmachari
- Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan 731 235, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
8
|
Chen L, Lv Q, Cai J, Liang J, Liang Z, Lin J, Xiao Y, Chen R, Zhang Z, Hong Y, Ji H. Design, synthesis and anticancer activity studies of 3-(coumarin-3-yl)-acrolein derivatives: Evidenced by integrating network pharmacology and vitro assay. Front Pharmacol 2023; 14:1141121. [PMID: 37033621 PMCID: PMC10076643 DOI: 10.3389/fphar.2023.1141121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Coumarin derivatives have diverse structures and show various significant biological activities. Aiming to develop more potent coumarin derivatives for cancer treatment, a series of coumarin acrolein hybrids were designed and synthesized by using molecular hybridization approach, and investigated for their antiproliferative activity against A549, KB, Hela and MCF-7 cancer cells as well as HUVEC and LO2 human normal cells. The results indicated that most of the synthesized compounds displayed remarkable inhibitory activity towards cancer cells but low cytotoxicity on normal cells. Among all the compounds, 5d and 6e were the most promising compounds against different cancer cell lines, especially for A549 and KB cells. The preliminary action mechanism studies suggested that compound 6e, the representative compound, was capable of dose-dependently suppressing migration, invasion and inducing significant apoptosis. Furthermore, the combined results of network pharmacology and validation experiments revealed that compound 6e induced mitochondria dependent apoptosis via the PI3K/AKT-mediated Bcl-2 signaling pathway. In summary, our study indicated compound 6e could inhibit cell proliferation, migration, invasion and promote cell apoptosis through inhibition of PI3K/AKT signaling pathway in human oral epidermoid carcinoma cells. These findings demonstrated the potential of 3-(coumarin-3-yl)-acrolein derivatives as novel anticancer chemotherapeutic candidates, providing ideas for further development of drugs for clinical use.
Collapse
Affiliation(s)
- Lexian Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qianqian Lv
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Jiajie Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziyan Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahui Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ying Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruiyao Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yue Hong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Ji
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hong Ji,
| |
Collapse
|
9
|
Abdelnaby RM, Rateb HS, Ali O, Saad AS, Nadeem RI, Abou-Seri SM, Amin KM, Younis NS, Abdelhady R. Dual PI3K/Akt Inhibitors Bearing Coumarin-Thiazolidine Pharmacophores as Potential Apoptosis Inducers in MCF-7 Cells. Pharmaceuticals (Basel) 2022; 15:ph15040428. [PMID: 35455425 PMCID: PMC9027131 DOI: 10.3390/ph15040428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/05/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer is the most common malignancy worldwide; therefore, the development of new anticancer agents is essential for improved tumor control. By adopting the pharmacophore hybridization approach, two series of 7-hydroxyl-4-methylcoumarin hybridized with thiosemicarbazone (V–VI) and thiazolidin-4-one moieties (VII–VIII) were prepared. The in vitro anticancer activity was assessed against MCF-7 cells adopting the MTT assay. Nine compounds showed significant cytotoxicity. The most promising compound, VIIb, induced remarkable cytotoxicity (IC50 of 1.03 + 0.05 µM). Further investigations were conducted to explore its pro-apoptotic activity demonstrating S-phase cell cycle arrest. Apoptosis rates following VIIb treatment revealed a 5-fold and 100-fold increase in early and late apoptotic cells, correspondingly. Moreover, our results showed caspase-9 dependent apoptosis induction as manifested by an 8-fold increase in caspase-9 level following VIIb treatment. Mechanistically, VIIb was found to target the PI3K-α/Akt-1 axis, as evidenced by enzyme inhibition assay results reporting significant inhibition of examined enzymes. These findings were confirmed by Western blot results indicating the ability of VIIb to repress levels of Cyclin D1, p-PI3K, and p-Akt. Furthermore, docking studies showed that VIIb has a binding affinity with the PI3K binding site higher than the original ligands X6K. Our results suggest that VIIb has pharmacological potential as a promising anti-cancer compound by the inhibition of the PI3K/Akt axis.
Collapse
Affiliation(s)
- Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Correspondence: ; Tel.: +20-1270551779
| | - Heba S. Rateb
- Pharmaceutical Chemistry Department, Faculty of Pharmaceutical Science and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12585, Egypt;
| | - Omaima Ali
- Egyptian Drug Authority, Cairo 12618, Egypt;
| | - Ahmed S. Saad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt;
| | - Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt;
| | - Sahar M. Abou-Seri
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Kamilia M. Amin
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (S.M.A.-S.); (K.M.A.)
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al Hofuf 31982, Al-Ahsa, Saudi Arabia;
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
10
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
11
|
Valipour M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur J Med Chem 2022; 235:114314. [DOI: 10.1016/j.ejmech.2022.114314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
|
12
|
Abdel Ghany LMA, El-Dydamony NM, Helwa AA, Abdelraouf SM, Abdelnaby RM. Coumarin-acetohydrazide derivatives as novel antiproliferative agents via VEGFR-2/AKT axis inhibition and apoptosis triggering. NEW J CHEM 2022. [DOI: 10.1039/d2nj02436e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The VEGFR-2/AKT pathway is a crucial axis in tumor survival where it is highly dysregulated in many cancer types.
Collapse
Affiliation(s)
- Lina M. A. Abdel Ghany
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Nehad M. El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Amira A. Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Sahar M. Abdelraouf
- Biochemistry Department, Faculty of pharmacy, Misr International University, Cairo, Egypt
| | - Rana M. Abdelnaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
13
|
Uckun FM, Venkatachalam T. Targeting Solid Tumors With BTK Inhibitors. Front Cell Dev Biol 2021; 9:650414. [PMID: 33937249 PMCID: PMC8079762 DOI: 10.3389/fcell.2021.650414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
The repurposing of FDA-approved Bruton's tyrosine kinase (BTK) inhibitors as therapeutic agents for solid tumors may offer renewed hope for chemotherapy-resistant cancer patients. Here we review the emerging evidence regarding the clinical potential of BTK inhibitors in solid tumor therapy. The use of BTK inhibitors may through lead optimization and translational research lead to the development of new and effective combination regimens for metastatic and/or therapy-refractory solid tumor patients.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, LLC, St. Paul, MN, United States
| | | |
Collapse
|
14
|
Wu Y, Xu J, Liu Y, Zeng Y, Wu G. A Review on Anti-Tumor Mechanisms of Coumarins. Front Oncol 2020; 10:592853. [PMID: 33344242 PMCID: PMC7746827 DOI: 10.3389/fonc.2020.592853] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
Coumarins are a class of compound with benzopyrone as their basic structure. Due to abundant sources, easy synthesis, and various pharmacological activities, coumarins have attracted extensive attention from researchers. In particular, coumarins have very significant anti-tumor abilities and a variety of anti-tumor mechanisms, including inhibition of carbonic anhydrase, targeting PI3K/Akt/mTOR signaling pathways, inducing cell apoptosis protein activation, inhibition of tumor multidrug resistance, inhibition of microtubule polymerization, regulating the reactive oxygen species, and inhibition of tumor angiogenesis, etc. This review focuses on the mechanisms and the research progress of coumarins against cancers in recent years.
Collapse
Affiliation(s)
- Yi Wu
- School of Stomatology, Central South University, Changsha, China
| | - Jing Xu
- School of Stomatology, Central South University, Changsha, China
| | - Yiting Liu
- School of Stomatology, Central South University, Changsha, China
| | - Yiyu Zeng
- School of Stomatology, Central South University, Changsha, China
| | - Guojun Wu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
15
|
Guo SX, He F, Dai AL, Zhang RF, Chen SH, Wu J. Synthesis and biological activities of novel trifluoromethylpyridine amide derivatives containing sulfur moieties. RSC Adv 2020; 10:35658-35670. [PMID: 35517062 PMCID: PMC9056882 DOI: 10.1039/d0ra07301f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
A series of trifluoromethylpyridine amide derivatives containing sulfur moieties (thioether, sulfone and sulfoxide) was designed and synthesized. Their antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Ralstonia solanacearum (R. solanacearum) and insecticidal activities against P. xylostella were evaluated. Notably, the half-maximal effective concentration (EC50) value of sulfone-containing compound F10 is 83 mg L-1 against Xoo, which is better than that of commercial thiodiazole copper (97 mg L-1) and bismerthiazol (112 mg L-1). Thioether-containing compounds E1, E3, E5, E6, E10, E11 and E13 showed much higher activities against R. solanacearum with the EC50 value from 40 to 78 mg L-1, which are much lower than that of thiodiazole copper (87 mg L-1) and bismerthiazol (124 mg L-1). Generally, most of the sulfone-containing compounds and sulfoxide-containing compounds showed higher activities against Xoo than that of the corresponding thioether-containing compound, but most of the thioether-containing compounds contributed higher antibacterial activities against R. solanacearum. Furthermore, title compounds E3, E11, E24 and G2 showed good insecticidal activities of 75%, 70%, 70% and 75%, respectively.
Collapse
Affiliation(s)
- S X Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - F He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - A L Dai
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - R F Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - S H Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| | - J Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University Huaxi District Guiyang 550025 P. R. China
| |
Collapse
|
16
|
Song X, Fan J, Liu L, Liu X, Gao F. Coumarin derivatives with anticancer activities: An update. Arch Pharm (Weinheim) 2020; 353:e2000025. [DOI: 10.1002/ardp.202000025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Xu‐Feng Song
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of Technology Beijing China
| | - Jing Fan
- Hengshui University Hengshui Hebei China
| | - Lan Liu
- Medicine Vocational and Technical SchoolWuhan University Wuhan Hubei China
| | - Xiao‐Feng Liu
- Sinolite Industrial Co., Ltd. Hangzhou Zhejiang China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP)Qilu University of Technology (Shandong Academy of Sciences) Jinan Shandong China
| |
Collapse
|
17
|
Gagic Z, Ruzic D, Djokovic N, Djikic T, Nikolic K. In silico Methods for Design of Kinase Inhibitors as Anticancer Drugs. Front Chem 2020; 7:873. [PMID: 31970149 PMCID: PMC6960140 DOI: 10.3389/fchem.2019.00873] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Rational drug design implies usage of molecular modeling techniques such as pharmacophore modeling, molecular dynamics, virtual screening, and molecular docking to explain the activity of biomolecules, define molecular determinants for interaction with the drug target, and design more efficient drug candidates. Kinases play an essential role in cell function and therefore are extensively studied targets in drug design and discovery. Kinase inhibitors are clinically very important and widely used antineoplastic drugs. In this review, computational methods used in rational drug design of kinase inhibitors are discussed and compared, considering some representative case studies.
Collapse
Affiliation(s)
- Zarko Gagic
- Department of Pharmaceutical Chemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Dusan Ruzic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Teodora Djikic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|