2
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
3
|
Kowalczyk J, Grapsi E, Espargaró A, Caballero AB, Juárez-Jiménez J, Busquets MA, Gamez P, Sabate R, Estelrich J. Dual Effect of Prussian Blue Nanoparticles on Aβ40 Aggregation: β-Sheet Fibril Reduction and Copper Dyshomeostasis Regulation. Biomacromolecules 2021; 22:430-440. [PMID: 33416315 DOI: 10.1021/acs.biomac.0c01290] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD), affecting almost 50 million individuals worldwide, is currently the first cause of dementia. Despite the tremendous research efforts in the last decade, only four supportive or palliative drugs, namely, acetylcholinesterase (AChE) inhibitors donepezil, galantamine, and rivastigmine and the glutamate NMDA receptor antagonist memantine, are currently available. New therapeutic strategies are becoming prominent, such as the direct inhibition of amyloid formation or the regulation of metal homeostasis. In the present report, the potential use of Prussian blue (PB), a drug that is in the World Health Organization Model List of Essential Medicines, in AD treatment is demonstrated. Both in vitro and in cellulo studies indeed suggest that PB nanoparticles (PBNPs) are capable of reducing the formation of typical amyloid-β fibers (detected by thioflavin T fluorescence) and restoring the usual amyloid fibrillation pathway via chelation/sequestration of copper, which is found in high concentrations in senile plaques.
Collapse
Affiliation(s)
- Joanna Kowalczyk
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Ettore Grapsi
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Ana B Caballero
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain.,NanoBIC, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Jordi Juárez-Jiménez
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain
| | - Maria A Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Patrick Gamez
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain.,NanoBIC, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| | - Joan Estelrich
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII, 27-31 Barcelona, Catalonia, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
4
|
Gao X, Wang Q, Cheng C, Lin S, Lin T, Liu C, Han X. The Application of Prussian Blue Nanoparticles in Tumor Diagnosis and Treatment. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6905. [PMID: 33287186 PMCID: PMC7730465 DOI: 10.3390/s20236905] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Prussian blue nanoparticles (PBNPs) have attracted increasing research interest in immunosensors, bioimaging, drug delivery, and application as therapeutic agents due to their large internal pore volume, tunable size, easy synthesis and surface modification, good thermal stability, and favorable biocompatibility. This review first outlines the effect of tumor markers using PBNPs-based immunosensors which have a sandwich-type architecture and competitive-type structure. Metal ion doped PBNPs which were used as T1-weight magnetic resonance and photoacoustic imaging agents to improve image quality and surface modified PBNPs which were used as drug carriers to decrease side effects via passive or active targeting to tumor sites are also summarized. Moreover, the PBNPs with high photothermal efficiency and excellent catalase-like activity were promising for photothermal therapy and O2 self-supplied photodynamic therapy of tumors. Hence, PBNPs-based multimodal imaging-guided combinational tumor therapies (such as chemo, photothermal, and photodynamic therapies) were finally reviewed. This review aims to inspire broad interest in the rational design and application of PBNPs for detecting and treating tumors in clinical research.
Collapse
Affiliation(s)
| | | | - Cui Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (X.G.); (Q.W.); (S.L.); (T.L.); (C.L.); (X.H.)
| | | | | | | | | |
Collapse
|
5
|
Mamontova E, Daurat M, Long J, Godefroy A, Salles F, Guari Y, Gary-Bobo M, Larionova J. Fashioning Prussian Blue Nanoparticles by Adsorption of Luminophores: Synthesis, Properties, and in Vitro Imaging. Inorg Chem 2020; 59:4567-4575. [PMID: 32149510 DOI: 10.1021/acs.inorgchem.9b03699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report the postsynthetic functionalization of Prussian blue (PB) nanoparticles by two different luminophores (2-aminoanthracene and rhodamine B). We show that the photoluminescence properties of the fluorophores are modified by a confinement effect upon adsorption and demonstrate that such multifunctional nanosized systems could be used for in vitro imaging.
Collapse
Affiliation(s)
- Ekaterina Mamontova
- UMR 5253, Equipe Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, ENSCM, CNRS, Institut Charles Gerhardt, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Morgane Daurat
- Institut des Biomolécules Max Mousseron, UMR5247, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 05, France.,NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jérôme Long
- UMR 5253, Equipe Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, ENSCM, CNRS, Institut Charles Gerhardt, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Anastasia Godefroy
- Institut des Biomolécules Max Mousseron, UMR5247, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 05, France.,NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Fabrice Salles
- UMR 5253, Equipe Agrégats, Interfaces et Matériaux pour l'Energie ENSCM/CNRS/UM, Institut Charles Gerhardt Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Yannick Guari
- UMR 5253, Equipe Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, ENSCM, CNRS, Institut Charles Gerhardt, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Magali Gary-Bobo
- Institut des Biomolécules Max Mousseron, UMR5247, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 05, France
| | - Joulia Larionova
- UMR 5253, Equipe Ingénierie Moléculaire et Nano-Objets, Université de Montpellier, ENSCM, CNRS, Institut Charles Gerhardt, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|