1
|
Jiang L, Dai J, Wang L, Chen L, Zeng G, Liu E, Zhou X, Yao H, Xiao Y, Fang J. Ca(H 2PO 4) 2 and MgSO 4 activated nitrogen-related bacteria and genes in thermophilic stage of compost. Appl Microbiol Biotechnol 2024; 108:331. [PMID: 38734749 PMCID: PMC11088556 DOI: 10.1007/s00253-024-13167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study was conducted to investigate the effects of Ca(H2PO4)2 and MgSO4 on the bacterial community and nitrogen metabolism genes in the aerobic composting of pig manure. The experimental treatments were set up as control (C), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), and 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2), which were used at the end of composting for potting trials. The results showed that Ca(H2PO4)2 and MgSO4 played an excellent role in retaining nitrogen and increasing the alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents of the composts. Adding Ca(H2PO4)2 and MgSO4 changed the microbial community structure of the compost. The microorganisms associated with nitrogen retention were activated. The complexity of the microbial network was enhanced. Genetic prediction analysis showed that the addition of Ca(H2PO4)2 and MgSO4 reduced the accumulation of nitroso-nitrogen and the process of denitrification. At the same time, despite the reduction of genes related to nitrogen fixation, the conversion of ammonia to nitrogenous organic compounds was promoted and the stability of nitrogen was increased. Mantel test analysis showed that Ca(H2PO4)2 and MgSO4 can affect nitrogen transformation-related bacteria and thus indirectly affect nitrogen metabolism genes by influencing the temperature, pH, and organic matter (OM) of the compost and also directly affected nitrogen metabolism genes through PO43- and Mg2+. The pot experiment showed that composting with 1.5% Ca(H2PO4)2 + 3% MgSO4 produced the compost product that improved the growth yield and nutrient content of cilantro and increased the fertility of the soil. In conclusion, Ca(H2PO4)2 and MgSO4 reduces the loss of nitrogen from compost, activates nitrogen-related bacteria and genes in the thermophilic phase of composting, and improves the fertilizer efficiency of compost products. KEY POINTS: • Ca(H2PO4)2 and MgSO4 reduced the nitrogen loss and improved the compost effect • Activated nitrogen-related bacteria and altered nitrogen metabolism genes • Improved the yield and quality of cilantro and fertility of soil.
Collapse
Affiliation(s)
- Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jiapeng Dai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lutong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangxi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Erlun Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangdan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Yao
- Board of Directors Department, Changsha IMADEK Intelligent Technology Company Limited, Changsha, 410137, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
2
|
Lin H, Cheng Q, Sun W, Yang F, Ding Y, Ma J. Copper exposure effects on antibiotic degradation in swine manure vary between mesophilic and thermophilic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156759. [PMID: 35718182 DOI: 10.1016/j.scitotenv.2022.156759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic and heavy metal commonly coexist in manure. This study investigated the effect of Cu exposure on antibiotic dissipation in swine manure under two typical temperature (mesophilic and thermophilic) conditions in composting, focusing on biodegradation behaviors. The results showed that Cu promoted the dissipation of norfloxacin and sulfamethazine (SMZ) in solid swine manure under mesophilic conditions at initial concentrations ranging from 407.8 to 1353.0 mg·kg-1 but insignificantly influenced or even inhibited their dissipation under thermophilic conditions. A liquid manure suspension culture experiment was designed to elucidate the response of SMZ biodegradation to Cu. In this manure suspension, biodegradation was the major mechanism for SMZ removal, but SMZ biodegradation was decreased from 23.2 % to 5.5 % when the Cu concentration increased from 0 to 10 mg L-1. Mesophilic and heat-resistant SMZ-degrading bacterial inoculants were subsequently prepared using 21 SMZ-degrading bacteria that were isolated and identified from manure suspension cultures. Inoculating both mesophilic and heat-resistant SMZ-degrading bacterial inoculants enhanced SMZ degradation in sterilized manure suspensions without Cu addition, however only mesophilic SMZ-degrading inoculum improved SMZ degradation after Cu addition. In the presence of Cu, the heat-resistant SMZ-degrading inoculum failed to enhance SMZ removal in manure suspensions. Our findings can help to answer why Cu has varied effects on antibiotic degradation during manure composting.
Collapse
Affiliation(s)
- Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qilu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wanchun Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Li S, Chen W, Liu D, Tao Y, Ma H, Feng Z, Li S, Zhou K, Wu J, Li J, Wei Y. Effect of superphosphate addition on heavy metals speciation and microbial communities during composting. BIORESOURCE TECHNOLOGY 2022; 359:127478. [PMID: 35714776 DOI: 10.1016/j.biortech.2022.127478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Superphosphate fertilizer (SSP) as an additive can reduce the nitrogen loss and increase available phosphorus in composting but few studies investigated the effect of SSP addition on heavy metal and microbial communities. In this study, different ratios (10%, 18%, 26%) of SSP were added into pig manure composting to assess the changes of heavy metal (Cu, Mn, As, Zn, and Fe) fractions, bacterial and fungal communities as well as their interactions. SSP addition at 18% had lower ecological risk but still increased the bioavailability of Cu, Mn, and Fe in composts compared to control. Adding 18% SSP into compost decreased bacterial number and increased the fungal diversity compared to CK. Redundancy analysis indicated heavy metal fractions correlated significantly with bacterial and fungal community compositions in composting with 18% SSP. Network analysis showed adding 18% SSP increased microbial interaction and positive cooperation especially enhanced the proportion of Proteobacteria and Ascomycota.
Collapse
Affiliation(s)
- Shuxin Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Dun Liu
- Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beihang University, Beijing 100191, China
| | - YueYue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou 215155, China
| | - Hongting Ma
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ziwei Feng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Songrong Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Kaiyun Zhou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Juan Wu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
4
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2022; 12:809834. [PMID: 35601203 PMCID: PMC9122265 DOI: 10.3389/fmicb.2021.809834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Cardoso ERC, Melo VF, Mazzetto JML, Vidal-Torrado P, Oliveira RO, Ramalho B, Bonfleur EJ. Organic matter quality by pyrolysis-gas chromatography/mass spectrometry and lead and arsenic adsorption. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:247. [PMID: 35246755 DOI: 10.1007/s10661-022-09883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The organic soils (Histosols) are important as filters for organic and inorganic pollutants, mainly because they are usually located on the banks of rivers and lakes. The aim of this study was to evaluate which functional groups of soil organic matter (SOM) most contribute for the Pb2+ and H2AsO4- adsorption in Histosols. This study used 20 samples (160 ~ 290 g kg-1 of organic carbon (OC) collected at 0-5 cm in five areas of Histosols from Curitiba, Southern of Brazil. Hydrofluoric acid (10%) was used to solubilize minerals to concentrate organic matter (391 to 510 g kg-1 of OC) in the samples. Samples having been submitted to pyrolysis in combination with gas chromatography (Py-GC/MS) that identified 186 organic compounds grouped based on their chemical similarity. The samples were saturated separately with Pb2+ and H2AsO4- under acid conditions (pH 4.0). The exchangeable (electrostatic interactions with SOM charges) and nonexchangeable (complexed to SOM) Pb2+ and H2AsO4- were determined for sequential methods (Ca(NO3)2 and EPA 3051A, respectively. Positive correlations occurred between exchangeable Pb2+ and phenolic compounds (r = 0.6, p < 0.05), lignin phenols (r = 0.5, p < 0.05), and sterols (r = 0.6, p < 0.05). For nonexchangeable Pb2+, there was a significant correlation with alkenes (r = 0.8, p < 0.01), alkanes (r = 0.8, p < 0.01), and methyl ketones (r = 0.7 p < 0.01). The exchangeable H2AsO4- is related to alkanes, alkenes, and methyl ketones. Therefore, in acid Histosols constituted of aliphatic organic matter tend to have less environmental fragility, due to the lesser transportation of these contaminants to other compartments like surface and subsurface waters.
Collapse
Affiliation(s)
- Edvaldo Renner Costa Cardoso
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil
| | - Vander Freitas Melo
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil.
| | - Josiane M L Mazzetto
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil
| | - Pablo Vidal-Torrado
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil
- Soil Science Department, ESALQ, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Ricardo Otto Oliveira
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil
| | - Bruna Ramalho
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil
| | - Eloana Janice Bonfleur
- Soil Science and Engineering Department, Federal University of Paraná State, Rua dos Funcionários, Curitiba, JuvevêPR, 154080035-050, Brazil
| |
Collapse
|
6
|
Lin H, Sun W, Yu Y, Ding Y, Yang Y, Zhang Z, Ma J. Simultaneous reductions in antibiotics and heavy metal pollution during manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147830. [PMID: 34134373 DOI: 10.1016/j.scitotenv.2021.147830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The co-existence of antibiotics and heavy metal (HM) is common in manure. However, existing strategies for improving antibiotic dissipation or HM immobilization during composting rarely consider their combined pollution. In this study, we used agricultural lime and a newly designed attapulgite-activated carbon composite (AACC) to enhance the stabilization of HMs in a pilot-scale swine manure composting system and assessed the effectiveness of these materials for removing antibiotic residues. Results indicated that the application of either lime or AACC simultaneously enhanced HM immobilization and antibiotic degradation. In particular, the addition of AACC reduced the enrichment of Cr, Cd, Pb, and As during composting and decreased the half-lives of the antibiotics from 10.7 days to 6.3 days, which were more effectively than lime. The physicochemical and microbiological responses to different additives were subsequently studied to understand the mechanisms underlying the fates of HMs and antibiotics. High HM stress in manure inhibited antibiotic dissipation, but metal immobilization alleviated this effect. The AACC accelerated HM immobilization by surface adsorption and metal precipitation, and this enhancement strengthened during the late composting stage due to an increase in pH, whereas lime exhibited a short-term effect. Moreover, the AACC addition enhanced the contribution of bacteria to changes in antibiotic concentrations, while the increase in pile temperature could be a major factor that contributed to the acceleration of antibiotic degradation after the addition of lime. Characterization of the final compost further showed that AACC-treated compost had the lowest residual concentrations of HMs and antibiotics, higher mortality of ascarid egg, improved nitrogen conversation, and reduced phytotoxicity. Thus, co-composting of swine manure with AACC is a promising approach for producing safer compost for use in agriculture.
Collapse
Affiliation(s)
- Hui Lin
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Wanchun Sun
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yijun Yu
- Zhejiang Cultivated Land Quality and Fertilizer Management Station, Hangzhou 310020, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, Scotland, United Kingdom
| | - Junwei Ma
- The Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Effects of On-Farm Dairy Manure Composting on Tetracycline Content and Nutrient Composition. Antibiotics (Basel) 2021; 10:antibiotics10040443. [PMID: 33920881 PMCID: PMC8071338 DOI: 10.3390/antibiotics10040443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
This study quantified the potential of farm-scale composting to degrade antibiotics in dairy manure. The compost windrow, consisting of sick cow bedding from a 1000-cow US dairy farm, was managed using the dairy farm’s typical practices and monitored for tetracycline and nutrient composition. Samples were collected over 33 days, which was the time from compost pile formation to land application as fertilizer, and analyzed for solids, antibiotics, and nutrient content. Average tetracycline concentrations at the beginning of the study (452 ng/g DW) were lower than at the end of composting (689 ng/g DW), illustrating that antibiotic degradation was not greater than degradation of the compost solids. Total Kjeldahl nitrogen (TKN) increased from 15.3 to 18.4 g/kg during the composting period due to decreases in solids and likely inhibition of N-mineralization due to the presence of antibiotics. The results indicated that antibiotics were not completely degraded when using the farm’s compost pile management techniques, with antibiotics possibly impacting nitrogen transformation in the compost, which should be considered in nutrient management when using sick cow bedding. Additionally, the results showed that antibiotic degradation during farm-scale composting can vary from reported laboratory-scale due to differences in management, composting duration, and temporal conditions, illustrating the need for more extensive on-farm research including common farm practices and real-world conditions.
Collapse
|
8
|
Mehmood T, Liu C, Niazi NK, Gaurav GK, Ashraf A, Bibi I. Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using Zea mays L. in contrasting textured soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:899-910. [PMID: 33395533 DOI: 10.1080/15226514.2020.1865267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) is considered as a potential energy-yielding crop which may respond to compost application for arsenic (As) phytoremediation depending on soil type and compost application levels in soil. Here, we explored compost-mediated As phytoremediation potential of maize in the two different textured soils (sandy loam soil and clay loam soil) at varying As (0-120 mg kg-1) and compost (0-2.5%) levels under glasshouse conditions. Results revealed that in the absence of compost maize plants grown at different soil As levels (0-120 mg kg-1) accumulated 1.20-1.71 times more As from sandy loam soil than that of clay loam soil. The compost addition in soil at all levels, with 120 mg kg-1 As enhanced As accumulation in maize plants in the clay loam soil by 13%, while it reduced As phyto-uptake by 27% in sandy loam soil. This may be due to an increase in phosphate-extractable (bioavailable) soil As content from 2.7 to 3.8 mg kg-1 in clay loam soil. The estimated daily intake (EDI) of As (0.03-0.15 μg g-1 of body weight day-1) was above the US EPA's standard value. Arsenic phytoremediation potential of the maize plants was found to be economical for sandy loam soil with 1% compost level and for clay loam soil at 2.5% compost level, suggesting soil type specific dose dependence of compost for As phytoremediation programs. Novelty statement: To our knowledge, the role of compost in economic feasibility of energy crops at contaminated soils in general, and in the growing of maize at As-contaminated soil in particular, has not been addressed, so far. Moreover, it is the first time to evaluate environmental and health risk of compost-mediated As phytoremediation in different soil types.This study provided new insights of economic evaluation and risk assessment in the phytoremediation and mechanisms of compost in biomass production of energy crop at different As concentration. These aspects in phytoremediation studies are imperative to understand for developing safe, cost-effective and soil specific remediation strategies.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Anam Ashraf
- School of Environment, Tsinghua University, Beijing, China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Kumar V, Pandita S, Singh Sidhu GP, Sharma A, Khanna K, Kaur P, Bali AS, Setia R. Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. CHEMOSPHERE 2021; 262:127810. [PMID: 32763578 DOI: 10.1016/j.chemosphere.2020.127810] [Citation(s) in RCA: 171] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 05/04/2023]
Abstract
Copper (Cu) is an essential element for humans and plants when present in lesser amount, while in excessive amounts it exerts detrimental effects. There subsists a narrow difference amid the indispensable, positive and detrimental concentration of Cu in living system, which substantially alters with Cu speciation, and form of living organisms. Consequently, it is vital to monitor its bioavailability, speciation, exposure levels and routes in the living organisms. The ingestion of Cu-laced food crops is the key source of this heavy metal toxicity in humans. Hence, it is necessary to appraise the biogeochemical behaviour of Cu in soil-plant system with esteem to their quantity and speciation. On the basis of existing research, this appraisal traces a probable connexion midst: Cu levels, sources, chemistry, speciation and bioavailability in the soil. Besides, the functions of protein transporters in soil-plant Cu transport, and the detrimental effect of Cu on morphological, physiological and nutrient uptake in plants has also been discussed in the current manuscript. Mechanisms related to detoxification strategies like antioxidative response and generation of glutathione and phytochelatins to combat Cu-induced toxicity in plants is discussed as well. We also delimits the Cu accretion in food crops and allied health perils from soils encompassing less or high Cu quantity. Finally, an overview of various techniques involved in the reclamation and restoration of Cu-contaminated soils has been provided.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, 182144, India.
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu and Kashmir, India
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kanika Khanna
- Independent Researcher, House No.282, Lane no. 3, Friends Colony, Opposite DAV College, Jalandhar, 144008, Punjab, India
| | - Parminder Kaur
- Independent Researcher, House No. 472, Ward No. 8, Dhariwal, Gurdaspur, 143519, Punjab, India
| | - Aditi Shreeya Bali
- Department of Botany, Dyal Singh College, Karnal, Haryana, 132001, India
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| |
Collapse
|
10
|
Yu X, Yan M, Cui Y, Liu Z, Liu H, Zhou J, Liu J, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Ma M, Li S. Effects of Co-application of Cadmium-Immobilizing Bacteria and Organic Fertilizers on Houttuynia cordata and Microbial Communities in a Cadmium-Contaminated Field. Front Microbiol 2021. [PMID: 35601203 DOI: 10.3389/fmicb.2021.687888/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Cadmium pollution is a serious threat to the soil environment. The application of bio-based fertilizers in combination with beneficial microbial agents is a sustainable approach to solving Cd pollution in farm soil. The present study investigated the effects of co-application of a Cd-immobilizing bacterial agent and two fermented organic fertilizers (fermentative edible fungi residue; fermentative cow dung) on Houttuynia cordata and its microbial communities in a Cd-polluted field. It showed that both the application of the Cd-immobilizing bacterial agent alone and the combined application of bio-based soil amendments and the bacterial agent effectively reduced >20% of the uptake of Cd by the plant. Soil nitrogen level was significantly raised after the combined fertilization. The multivariate diversity analysis and co-occurrence network algorithm showed that a significant shift of microbial communities took place, in which the microbial populations tended to be homogeneous with reduced microbial richness and increased diversity after the co-application. The treatment of fermentative cow dung with the addition of the bacterial agent showed a significant increase in the microbial community dissimilarity (R = 0.996, p = 0.001) compared to that treated with cow dung alone. The co-application of the bacterial agent with both organic fertilizers significantly increased the abundance of Actinobacteria and Bacteroidetes. The FAPROTAX soil functional analysis revealed that the introduction of the microbial agent could potentially suppress human pathogenic microorganisms in the field fertilized with edible fungi residue. It also showed that the microbial agent can reduce the nitrite oxidation function in the soil when applied alone or with the organic fertilizers. Our study thus highlights the beneficial effects of the Cd-immobilizing bacterial inoculant on H. cordata and provides a better understanding of the microbial changes induced by the combined fertilization using the microbial agent and organic soil amendments in a Cd-contaminated field.
Collapse
Affiliation(s)
- Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yongliang Cui
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Zhongyi Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Han Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jie Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jiahao Liu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Riaz L, Wang Q, Yang Q, Li X, Yuan W. Potential of industrial composting and anaerobic digestion for the removal of antibiotics, antibiotic resistance genes and heavy metals from chicken manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137414. [PMID: 32105920 DOI: 10.1016/j.scitotenv.2020.137414] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Composting and anaerobic digestion techniques are widely used for manure recycling, but these methods have shown conflicting results in the removal of antibiotics, antibiotic resistance genes (ARGs), and heavy metals. In the present study, anaerobically digested chicken manure and various types of composted chicken manure were investigated on an industrial scale. Antibiotics, ARGs, and heavy metals had shown inconsistent results for anaerobic digestion and composting. The different composting processes either declined or completely removed the blaCTX-M, intl1 and oqxB genes. In addition, composting processes decreased the absolute abundance of aac6'-Ib and aadA genes, while increased the absolute abundance of qnrD, sul1, and tet(A) genes. On the other hand, anaerobic digestion of chicken manure increased the absolute abundance of ere(A) and tet(A). High throughput sequencing showed that Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria dominated the total bacterial composition of composted and anaerobically digested samples. Network analysis revealed the co-occurrence of ARGs and intl1. The redundancy analysis showed a significant correlation between some heavy metals and ARGs. Similarly, the bacterial composition showed a positive correlation with the prevalence of ARGs in treated manure. These findings suggest that bacterial community, heavy metals, and mobile genetic elements can play a significant role in the abundance and variation of ARGs during composting and anaerobic digestion. In conclusion, anaerobic digestion and composting methods at industrial scale need to be improved for the effective removal of antibiotics, ARGs and heavy metals from chicken manure.
Collapse
Affiliation(s)
- Luqman Riaz
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qianqian Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China.
| | - Xunan Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| | - Wei Yuan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology (Henan Provincial Department of Science and Technology), Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
12
|
Effect of Cornstalk Biochar Immobilized Bacteria on Ammonia Reduction in Laying Hen Manure Composting. Molecules 2020; 25:molecules25071560. [PMID: 32231157 PMCID: PMC7181132 DOI: 10.3390/molecules25071560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023] Open
Abstract
NH3 emission has become one of the key factors for aerobic composting of animal manure. It has been reported that adding microbial agents during aerobic composting can reduce NH3 emissions. However, environmental factors have a considerable influence on the activity and stability of the microbial agent. Therefore, this study used cornstalk biochar as carriers to find out the better biological immobilization method to examine the mitigation ability and mechanism of NH3 production from laying hen manure composting. The results from different immobilized methods showed that NH3 was reduced by 12.43%, 5.53%, 14.57%, and 22.61% in the cornstalk biochar group, free load bacteria group, mixed load bacteria group, and separate load bacteria group, respectively. Under the simulated composting condition, NH3 production was 46.52, 38.14, 39.08, and 30.81 g in the treatment of the control, mixed bacteria, cornstalk biochar, and cornstalk biochar separate load immobilized mixed bacteria, respectively. The cornstalk biochar separate load immobilized mixed bacteria treatment significantly reduced NH3 emission compared with the other treatments (p < 0.05). Compared with the control, adding cornstalk biochar immobilized mixed bacteria significantly decreased the electrical conductivity, water-soluble carbon, total nitrogen loss, and concentration of ammonium nitrogen (p < 0.05), and significantly increased the seed germination rate, total number of microorganisms, and relative abundance of lactic acid bacteria throughout the composting process (p < 0.05). Therefore, the reason for the low NH3 emission might be due not only to the adsorption of the cornstalk biochar but also because of the role of complex bacteria, which increases the relative abundance of lactic acid bacteria and promotes the acid production of lactic acid bacteria to reduce NH3 emissions. This result revealed the potential of using biological immobilization technology to reduce NH3 emissions during laying hen manure composting.
Collapse
|