1
|
Chen J, Yu D, Li X, Deng Q, Yang H, Chen L, Bai L. A review of Brucea javanica: metabolites, pharmacology and clinical application. Front Pharmacol 2024; 14:1317620. [PMID: 38371913 PMCID: PMC10871038 DOI: 10.3389/fphar.2023.1317620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/27/2023] [Indexed: 02/20/2024] Open
Abstract
This review examines advances in the metabolites, pharmacological research, and therapeutic applications of the medicinal fruit of Brucea javanica (L.) Merr. Brucea javanica (BJ) is derived from the fruit of the Brucea javanica (L.) Merr. There are nearly 200 metabolites present in BJ, and due to the diversity of its metabolites, BJ has a wide range of pharmacological effects. The traditional pharmacological effects of BJ include anti-dysentery, anti-malaria, etc. The research investigating the contemporary pharmacological impacts of BJ mainly focuses on its anti-tumor properties. In the article, the strong monomeric metabolites among these pharmacological effects were preliminarily screened. Regarding the pharmacological mechanism of action, current research has initially explored BJ's pharmacological agent and molecular signaling pathways. However, a comprehensive system has yet to be established. BJ preparations have been utilized in clinical settings and have demonstrated effectiveness. Nevertheless, clinical research is primarily limited to observational studies, and there is a need for higher-quality research evidence to support its clinical application. There are still many difficulties and obstacles in studying BJ. However, it is indisputable that BJ is a botanical drugs with significant potential for application, and it is expected to have broader global usage.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Guangyuan Central Hospital of Sichuan Province, Guangyuan, China
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Pharmacy, Guanghan People's Hospital, Guanghan, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Ketema T, Tadele M, Gebrie Z, Makonnen E, Hailu A, Abay SM. In vitro Anti-Leishmanial Activities of Methanol Extract of Brucea antidysenterica J.F. Mill Seeds and Its Solvent Fractions. J Exp Pharmacol 2023; 15:123-135. [PMID: 36937078 PMCID: PMC10022440 DOI: 10.2147/jep.s397352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
Introduction Leishmaniasis is one of the neglected tropical diseases, threatening lives of about 350 million people globally. Brucea antidysenterica seeds are used for the treatment of cutaneous leishmaniasis in the traditional medicine in Ethiopia. Objective This study aimed to evaluate Brucea antidysenterica seeds' anti-leishmanial activity in vitro. Methods The crude (80% methanol) extract of Brucea antidysenterica seeds and its fractions were evaluated for their anti-leishmanial activities against promastigotes and intracellular amastigotes of Leishmania donovani and Leishmania aethiopica, and for their cytotoxic effects against mammalian cells. The quantitative estimations of total phenolic compounds (TPCs), flavonoids (TFCs) and alkaloids (TACs) were determined, spectrophotometrically. Median inhibitory concentration (IC50) and median cytotoxic concentration (CC50) of the extract and its solvent fractions were calculated using GraphPad Prism 9.1.0 computer software. Data was presented as mean ± standard error of the mean (SEM). Results The crude extract and its hexane, ethyl acetate and butanol fractions showed anti-leishmanial activities, with IC50 values of 4.14-60.12 µg/mL against promastigotes, and 6.16-40.12 µg/mL against amastigotes of both Leishmania species. They showed moderate cytotoxicity against Vero cell lines and peritoneal mice macrophages, with CC50 values of 100-500 µg/mL, but >1600 µg/mL against red blood cells. Selectivity indices ranged from 7.97 to 30.97. The crude extract, and its ethyl acetate and hexane fractions possessed 54.78-127.72 mg of gallic acid equivalent TPC, 18.30-79.21 mg of quercetin equivalent TFC, and 27.62-97.22 mg of atropine equivalent TAC per gram of extracts. Conclusion The seeds of the plant possessed anti-leishmanial activities against L. aethiopica and L. donovani that might provide a scientific justification for its use in the treatment of leishmaniasis by traditional healers. Future works are recommended to isolate, purify and identify the possible secondary metabolites attributed to the anti-leishmanial activity.
Collapse
Affiliation(s)
- Tasisa Ketema
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Markos Tadele
- Animal Health Research Program, Ethiopian Institute of Agricultural Research, Holetta, Ethiopia
| | - Zewdie Gebrie
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Asrat Hailu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon M Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Youmbi LM, Makong YSD, Mbaveng AT, Tankeo SB, Fotso GW, Ndjakou BL, Wansi JD, Beng VP, Sewald N, Ngadjui BT, Efferth T, Kuete V. Cytotoxicity of the methanol extracts and compounds of Brucea antidysenterica (Simaroubaceae) towards multifactorial drug-resistant human cancer cell lines. BMC Complement Med Ther 2023; 23:48. [PMID: 36793009 PMCID: PMC9930359 DOI: 10.1186/s12906-023-03877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cancer remains a global health concern and constitutes an important barrier to increasing life expectancy. Malignant cells rapidly develop drug resistance leading to many clinical therapeutic failures. The importance of medicinal plants as an alternative to classical drug discovery to fight cancer is well known. Brucea antidysenterica is an African medicinal plant traditionally used to treat cancer, dysentery, malaria, diarrhea, stomach aches, helminthic infections, fever, and asthma. The present work was designed to identify the cytotoxic constituents of Brucea antidysenterica on a broad range of cancer cell lines and to demonstrate the mode of induction of apoptosis of the most active samples. METHODS Seven phytochemicals were isolated from the leaves (BAL) and stem (BAS) extract of Brucea antidysenterica by column chromatography and structurally elucidated using spectroscopic techniques. The antiproliferative effects of the crude extracts and compounds against 9 human cancer cell lines were evaluated by the resazurin reduction assay (RRA). The activity in cell lines was assessed by the Caspase-Glo assay. The cell cycle distribution, apoptosis via propidium iodide (PI) staining, mitochondrial membrane potential (MMP) through 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) staining, and the reactive oxygen species (ROS) via 2´,7´-dichlorodihydrofluoresceine diacetate (H2DCFH-DA) staining, were investigated by flow cytometry. RESULTS Phytochemical studies of the botanicals (BAL and BAS) led to the isolation of seven compounds. BAL and its constituents 3, (3-(3-Methyl-1-oxo-2-butenyl))1H indole (1) and hydnocarpin (2), as well as the reference compound, doxorubicin, had antiproliferative activity against 9 cancer cell lines. The IC50 values varied from 17.42 µg/mL (against CCRF-CEM leukemia cells) to 38.70 µg/mL (against HCT116 p53-/- colon adenocarcinoma cells) for BAL, from 19.11 µM (against CCRF-CEM cells) to 47.50 µM (against MDA-MB-231-BCRP adenocarcinoma cells) for compound 1, and from 4.07 µM (against MDA-MB-231-pcDNA cells) to 11.44 µM (against HCT116 p53+/+ cells) for compound 2. Interestingly, hypersensitivity of resistant cancer cells to compound 2 was also observed. BAL and hydnocarpin induced apoptosis in CCRF-CEM cells mediated by caspase activation, the alteration of MMP, and increased ROS levels. CONCLUSION BAL and its constituents, mostly compound 2, are potential antiproliferative products from Brucea antidysenterica. Other studies will be necessary in the perspective of the discovery of new antiproliferative agents to fight against resistance to anticancer drugs.
Collapse
Affiliation(s)
- Laetitia M. Youmbi
- grid.8201.b0000 0001 0657 2358Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon ,grid.412661.60000 0001 2173 8504Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Yves S. D. Makong
- grid.413096.90000 0001 2107 607XDepartment of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Armelle T. Mbaveng
- grid.8201.b0000 0001 0657 2358Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon ,grid.5802.f0000 0001 1941 7111Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Simplice B. Tankeo
- grid.8201.b0000 0001 0657 2358Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon ,grid.5802.f0000 0001 1941 7111Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ghislain W. Fotso
- grid.412661.60000 0001 2173 8504Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Bruno L. Ndjakou
- grid.412661.60000 0001 2173 8504Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1, Yaounde, Cameroon
| | - Jean D. Wansi
- grid.413096.90000 0001 2107 607XDepartment of Chemistry, Faculty of Science, University of Douala, Douala, Cameroon
| | - Veronique P. Beng
- grid.412661.60000 0001 2173 8504Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Norbert Sewald
- grid.7491.b0000 0001 0944 9128Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, 33501 Bielefeld, Germany
| | - Bonaventure T. Ngadjui
- grid.412661.60000 0001 2173 8504Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon. .,Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128, Mainz, Germany.
| |
Collapse
|
4
|
Hu H, Hu C, Peng J, Ghosh AK, Khan A, Sun D, Luyten W. Bioassay-Guided Interpretation of Antimicrobial Compounds in Kumu, a TCM Preparation From Picrasma quassioides' Stem via UHPLC-Orbitrap-Ion Trap Mass Spectrometry Combined With Fragmentation and Retention Time Calculation. Front Pharmacol 2021; 12:761751. [PMID: 34776978 PMCID: PMC8581800 DOI: 10.3389/fphar.2021.761751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
The stem of Picrasma quassioides (PQ) was recorded as a prominent traditional Chinese medicine, Kumu, which was effective for microbial infection, inflammation, fever, and dysentery, etc. At present, Kumu is widely used in China to develop different medicines, even as injection (Kumu zhusheye), for combating infections. However, the chemical basis of its antimicrobial activity has still not been elucidated. To examine the active chemicals, its stem was extracted to perform bioassay-guided purification against Staphylococcus aureus and Escherichia coli. In this study, two types of columns (normal and reverse-phase) were used for speedy bioassay-guided isolation from Kumu, and the active peaks were collected and identified via an UHPLC-Orbitrap-Ion Trap Mass Spectrometer, combined with MS Fragmenter and ChromGenius. For identification, the COCONUT Database (largest database of natural products) and a manually built PQ database were used, in combination with prediction and calculation of mass fragmentation and retention time to better infer their structures, especially for isomers. Moreover, three standards were analyzed under different conditions for developing and validating the MS method. A total of 25 active compounds were identified, including 24 alkaloids and 1 triterpenoid against S. aureus, whereas only β-carboline-1-carboxylic acid and picrasidine S were active against E. coli. Here, the good antimicrobial activity of 18 chemicals was reported for the first time. Furthermore, the spectrum of three abundant β-carbolines was assessed via their IC50 and MBC against various human pathogens. All of them exhibited strong antimicrobial activities with good potential to be developed as antibiotics. This study clearly showed the antimicrobial chemical basis of Kumu, and the results demonstrated that HRMS coupled with MS Fragmenter and ChromGenius was a powerful tool for compound analysis, which can be used for other complex samples. Beta-carbolines reported here are important lead compounds in antibiotic discovery.
Collapse
Affiliation(s)
- Haibo Hu
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Postharvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Jinnian Peng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Alokesh Kumar Ghosh
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Ajmal Khan
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| | - Dan Sun
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium.,College of Life Sciences, NanKai University, Tianjin, China
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Su Z, Ma Z, Liu K, Li T, Zhou B. Quassilactones A and B, structural characterization of a new class of norquassinoids from Brucea javanica. J Nat Med 2020; 74:599-605. [PMID: 32279206 DOI: 10.1007/s11418-020-01407-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 11/28/2022]
Abstract
Two novel norquassinoids possessing a unique ketal skeleton, designated quassilactones A (1) and B (2), were isolated from the fruits of Brucea javanica (Simaroubaceae). Their structures were established by extensive NMR and HR-ESI-MS spectroscopic analysis. The absolute configuration of 1 was determined through single-crystal X-ray crystallography, and that of 2 was assigned by comparing the calculated electronic and experimental circular dichroism with compound 1. In addition, their cytotoxic activities against three human cancer cell lines and their antimicrobial activities were evaluated.
Collapse
Affiliation(s)
- Zhiwei Su
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhonghui Ma
- National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, China.
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Tingting Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Bo Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|