1
|
Shi Z, Guo Z, Li S, Jiang C, Wang J, Deng X, Liu H, Qiu J. Purpurin suppresses Salmonella invasion of host cells by reducing the secretion of T3SS-1 effector proteins. Sci Rep 2025; 15:4507. [PMID: 39915561 PMCID: PMC11802881 DOI: 10.1038/s41598-025-86822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Salmonella Typhimurium (S. Typhimurium, ST) is a food-borne pathogen that can be transmitted from animals to humans and causes symptoms such as diarrhea, fever, and vomiting. While antibiotics are commonly used to treat clinical infections, the increase in drug resistance has limited their effectiveness. Antivirulence drugs offer a new approach to treating bacterial infections by targeting specific virulence factors without affecting bacterial growth, thus helping to combat infection without exerting selective pressure on bacteria or inducing resistance. Salmonella pathogenicity island 1 (SPI-1), encoding type three secretion system 1 (T3SS-1), serves as a crucial virulence factor for the invasion of ST into host cells, making it an ideal target for screening anti-Salmonella virulence drugs. This project involved screening of ST invasion inhibitors through a gentamicin protection assay and identified purpurin (PPR) as capable of inhibiting the ST invasion of HeLa cells. Subsequent studies revealed that PPR had no effect on the natural growth of bacteria and was not cytotoxic to host cells. A mechanistic study revealed that PPR effectively inhibits the secretion of T3SS-1 in ST. The results from animal experiments indicated that PPR exhibited significant efficacy in a mouse enteritis model caused by ST infection, increasing the survival rate of mice infected with a lethal dose by 50%, reducing spleen colonization in infected mice, and alleviating tissue damage resulting from ST infection. Therefore, PPR represents a promising antivirulence drug that targets the T3SS of ST and may serve as a hit compound for the development of novel antivirulence drugs for the treatment of ST.
Collapse
Affiliation(s)
- Zhenxu Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Siqi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Chenxiao Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Laboratory Medicine, Center for Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
3
|
Chkair R, Couvez J, Brégier F, Diab-Assaf M, Sol V, Blanchard-Desce M, Liagre B, Chemin G. Activity of Hydrophilic, Biocompatible, Fluorescent, Organic Nanoparticles Functionalized with Purpurin-18 in Photodynamic Therapy for Colorectal Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1557. [PMID: 39404284 PMCID: PMC11478336 DOI: 10.3390/nano14191557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved, non-invasive therapy currently used for several solid tumors, triggering cell death through the generation of reactive oxygen species (ROS). However, the hydrophobic nature of most of the photosensitizers used, such as chlorins, limits the overall effectiveness of PDT. To address this limitation, the use of nanocarriers seems to be a powerful approach. From this perspective, we have recently developed water-soluble and biocompatible, fluorescent, organic nanoparticles (FONPs) functionalized with purpurin-18 and its derivative, chlorin p6 (Cp6), as new PDT agents. In this study, we aimed to investigate the induced cell death mechanism mediated by these functionalized nanoparticles after PDT photoactivation. Our results show strong phototoxic effects of the FONPs[Cp6], mediated by intracellular ROS generation, and subcellular localization in HCT116 and HT-29 human colorectal cancer (CRC) cells. Additionally, we proved that, post-PDT, the FONPs[Cp6] induce apoptosis via the intrinsic mitochondrial pathway, as shown by the significant upregulation of the Bax/Bcl-2 ratio, the activation of caspases 9, 3, and 7, leading poly-ADP-ribose polymerase (PARP-1) cleavage, and DNA fragmentation. Our work demonstrates the photodynamic activity of these nanoparticles, making them promising candidates for the PDT treatment of CRC.
Collapse
Affiliation(s)
- Rayan Chkair
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Justine Couvez
- University Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), Bat A12, 351 Cours de la Libération, 33405 Talence, France;
| | - Frédérique Brégier
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Mona Diab-Assaf
- Doctoral School of Sciences and Technology, Lebanese University, Hadath, Beirut 21219, Lebanon;
| | - Vincent Sol
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Mireille Blanchard-Desce
- University Bordeaux, CNRS, Bordeaux INP, ISM (UMR5255), Bat A12, 351 Cours de la Libération, 33405 Talence, France;
| | - Bertrand Liagre
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| | - Guillaume Chemin
- University Limoges, LABCiS, UR 22722, 87000 Limoges, France; (R.C.); (F.B.); (V.S.); (B.L.)
| |
Collapse
|
4
|
Zumaya ALV, Pavlíčková VS, Rimpelová S, Štějdířová M, Fulem M, Křížová I, Ulbrich P, Řezanka P, Hassouna F. PLGA-based nanocarriers for combined delivery of colchicine and purpurin 18 in cancer therapy: Multimodal approach employing cancer cell spheroids. Int J Pharm 2024; 657:124170. [PMID: 38679244 DOI: 10.1016/j.ijpharm.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Vladimíra Svobodová Pavlíčková
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Silvie Rimpelová
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| | - Markéta Štějdířová
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Ivana Křížová
- Faculty of Biotechnology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Řezanka
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
5
|
Wahnou H, Youlyouz-Marfak I, Liagre B, Sol V, Oudghiri M, Duval RE, Limami Y. Shining a Light on Prostate Cancer: Photodynamic Therapy and Combination Approaches. Pharmaceutics 2023; 15:1767. [PMID: 37376215 DOI: 10.3390/pharmaceutics15061767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Prostate cancer is a major health concern worldwide, and current treatments, such as surgery, radiation therapy, and chemotherapy, are associated with significant side effects and limitations. Photodynamic therapy (PDT) is a promising alternative that has the potential to provide a minimally invasive and highly targeted approach to treating prostate cancer. PDT involves the use of photosensitizers (PSs) that are activated by light to produce reactive oxygen species (ROS), which can induce tumor cell death. There are two main types of PSs: synthetic and natural. Synthetic PSs are classified into four generations based on their structural and photophysical properties, while natural PSs are derived from plant and bacterial sources. Combining PDT with other therapies, such as photothermal therapy (PTT), photoimmunotherapy (PIT), and chemotherapy (CT), is also being explored as a way to improve its efficacy. This review provides an overview of conventional treatments for prostate cancer, the underlying principles of PDT, and the different types of PSs used in PDT as well as ongoing clinical studies. It also discusses the various forms of combination therapy being explored in the context of PDT for prostate cancer, as well as the challenges and opportunities associated with this approach. Overall, PDT has the potential to provide a more effective and less invasive treatment option for prostate cancer, and ongoing research is aimed at improving its selectivity and efficacy in clinical settings.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco
| | - Ibtissam Youlyouz-Marfak
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| | | | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco
| | | | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| |
Collapse
|
6
|
Sun W, Chu C, Li S, Ma X, Liu P, Chen S, Chen H. Nanosensitizer-mediated unique dynamic therapy tactics for effective inhibition of deep tumors. Adv Drug Deliv Rev 2023; 192:114643. [PMID: 36493905 DOI: 10.1016/j.addr.2022.114643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
X-ray and ultrasound waves are widely employed for diagnostic and therapeutic purposes in clinic. Recently, they have been demonstrated to be ideal excitation sources that activate sensitizers for the dynamic therapy of deep-seated tumors due to their excellent tissue penetration. Here, we focused on the recent progress in five years in the unique dynamic therapy strategies for the effective inhibition of deep tumors that activated by X-ray and ultrasound waves. The concepts, mechanisms, and typical nanosensitizers used as energy transducers are described as well as their applications in oncology. The future developments and potential challenges are also discussed. These unique therapeutic methods are expected to be developed as depth-independent, minimally invasive, and multifunctional strategies for the clinic treatment of various deep malignancies.
Collapse
Affiliation(s)
- Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Peifei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shileng Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Łażewski D, Murias M, Wierzchowski M. Pegylation – in search of balance and enhanced bioavailability. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the process of finding better therapeutics, thousands of new molecules are synthesised every day. Many of these can be poorly soluble in water, leading to a potentially promising drug being rejected during testing due to its poor solubility. Polyethylene glycol (PEG) has become known as an excellent modification to remedy this and was initially used to increase circulation time and reduce the immunogenicity of therapeutic proteins. Thus significantly increasing their safety and range of use. Another group of compounds in which significant benefits of pegylation have been seen are photosensitisers. Used in photodynamic therapy, they are often characterised by very high hydrophobicity. Pegylation of their structure significantly increases their affinity for cancer cells and facilitates their penetration through cell membranes. Classical small-molecule drugs can benefit from temporary combinations hydrolysed in the body or very short PEG chains. This approach allows a significant increase in the bioavailability of the drug while avoiding the disadvantages of small molecule pegylation. However, the most common motive for pegylation recently is the creation of drug carriers. Liposomes and nanoparticles make it possible to exploit the advantages of PEG to stabilise their structure and increase circulation time while not modifying the structure of the active compound. Unfortunately, PEGs also have their drawbacks. The first is their high molecular weight range, especially for longer chains, which poses difficulties in purification. Another is the emergence of antibodies directed against PEG. Nevertheless, pegylation is still an up-and-coming method for modifying pharmaceutically active molecules.
Collapse
|
8
|
Novel Short PEG Chain-Substituted Porphyrins: Synthesis, Photochemistry, and In Vitro Photodynamic Activity against Cancer Cells. Int J Mol Sci 2022; 23:ijms231710029. [PMID: 36077451 PMCID: PMC9456001 DOI: 10.3390/ijms231710029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
This work presents the synthesis and characterization of metal-free, zinc (II), and cobalt (II) porphyrins substituted with short PEG chains. The synthesized compounds were characterized by UV-Vis, 1H and 13C NMR spectroscopy, and MALDI-TOF mass spectrometry. The origin of the absorption bands for tested compounds in the UV-Vis range was determined using a computational model based on the electron density functional theory (DFT) and its time-dependent variant (TD-DFT). The photosensitizing activity was evaluated by measuring the ability to generate singlet oxygen (ΦΔ), which reached values up to 0.54. The photodynamic activity was tested using bladder (5637), prostate (LNCaP), and melanoma (A375) cancer cell lines. In vitro experiments clearly showed the structure-activity relationship regarding types of substituents, their positions in the phenyl ring, and the variety of central metal ions on the porphyrin core. Notably, the metal-free derivative 3 and its zinc derivative 6 exerted strong cytotoxic activity toward 5637 cells, with IC50 values of 8 and 15 nM, respectively. None of the tested compounds induced a cytotoxic effect without irradiation. In conclusion, these results highlight the potential value of the tested compounds for PDT application.
Collapse
|
9
|
Advances in photodynamic antimicrobial chemotherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Assessing the photodynamic efficacy of different photosensitizer-light treatments against foodborne bacteria based on the number of absorbed photons. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112249. [PMID: 34237541 DOI: 10.1016/j.jphotobiol.2021.112249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022]
Abstract
Increasing interests in photodynamic treatment (PDT) for food preservation require a holistic method to evaluate and compare different photosensitizer (PS)-light treatments. In this report, the absorbed photons were used as the basis to assess the antimicrobial photodynamic efficacy of two PSs, chlorophyllin sodium magnesium salt (Chl-Mg) and chlorophyllin sodium copper salt (Chl-Cu), under blue and white light against two typical foodborne pathogens, Gram-negative Escherichia coli, and Gram-positive Staphylococcus aureus. The results showed that the phototoxicity of a PS was predominantly decided by the absorbed photons rather than the characteristics of light sources. Photosensitized Chl-Mg exhibited superior antimicrobial activity as compared to that of ChlCu. The applied treatments were found to be more effective against S. aureus than E. coli. Bacterial inactivation kinetics as a function of the number of absorbed photons could be described by Weibull model with R2 from 0.947-0.962, and kinetics constants D in the range of 0.202 × 1017 photons/cm2-2.409 × 1018 photons/cm2. The kinetics models may find promising applications in the design, assessment, and optimization of PDT processes.
Collapse
|
11
|
Singh J, Hussain Y, Luqman S, Meena A. Purpurin: A natural anthraquinone with multifaceted pharmacological activities. Phytother Res 2021; 35:2418-2428. [PMID: 33254282 DOI: 10.1002/ptr.6965] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Purpurin is a naturally occurring anthraquinone isolated from the roots of Rubia cordifolia. Historically, it has been used as a red dye. However, its photosensitizing property and biological effects have deciphered its novel application. Purpurin shows antigenotoxic, anticancer, neuromodulatory, and antimicrobial potential associated with antioxidant action in in vivo and in vitro experiments. A robust antioxidant nature of purpurin is responsible for the majority of its pharmacological effects. It produces anti-inflammatory activity by reducing oxidative stress, which is a fundamental property to target diseases involving endoplasmic reticulum and mitochondrial stress. It can cross the blood-brain barrier and produce neuroprotective effects, including antidepressant and anti-Alzheimer action. It shows antimutagenic property via inhibiting essential CYP-450 enzymes. Interestingly, it gets photosensitized by UV-light and produces target-specific ROS-dependent apoptosis in cancer cells. Therefore, it owns cell killing and cell survival potential subject to the influence of external conditions. Hitherto, limited research studies are performed with purpurin to understand its therapeutic potential. Hence, this review describes and discusses different in vivo, in vitro, and in silico studies performed using purpurin. It also covers physicochemical, pharmacokinetics, and toxicology aspects of purpurin. Moreover, in the end, the prospect of purpurin in the management of cancer has also been proposed.
Collapse
Affiliation(s)
- Jyoti Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
12
|
Bouramtane S, Bretin L, Pinon A, Leger D, Liagre B, Perez DDS, Launay Y, Brégier F, Sol V, Chaleix V. Acetylxylan‐pheophorbide
‐a nanoparticles designed for
tumor‐targeted
photodynamic therapy. J Appl Polym Sci 2021. [DOI: 10.1002/app.50799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soukaina Bouramtane
- Laboratoire PEIRENE EA 7500, Faculté des Sciences et Techniques Université de Limoges France
| | - Ludovic Bretin
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie Université de Limoges France
| | - Aline Pinon
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie Université de Limoges France
| | - David Leger
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie Université de Limoges France
| | - Bertrand Liagre
- Laboratoire PEIRENE EA 7500, Faculté de Pharmacie Université de Limoges France
| | | | - Yann Launay
- Centre Européen de la Céramique Université de Limoges Limoges France
| | - Frédérique Brégier
- Laboratoire PEIRENE EA 7500, Faculté des Sciences et Techniques Université de Limoges France
| | - Vincent Sol
- Laboratoire PEIRENE EA 7500, Faculté des Sciences et Techniques Université de Limoges France
| | - Vincent Chaleix
- Laboratoire PEIRENE EA 7500, Faculté des Sciences et Techniques Université de Limoges France
| |
Collapse
|
13
|
Li Z, Zhou X, Zhu H, Song X, Gao H, Niu Z, Lu J. Purpurin binding interacts with LHPP protein that inhibits PI3K/AKT phosphorylation and induces apoptosis in colon cancer cells HCT-116. J Biochem Mol Toxicol 2021; 35:e22665. [PMID: 33368780 DOI: 10.1002/jbt.22665] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the leading type of diagnosed cancer; globally, it resides in the fourth-leading origin of cancer-interrelated mortality in the globe. The treatment strategies were chemotherapy and potent radiotherapy. Although chemotherapy treatment can eliminate tumor cells, it remains with unnecessary toxic effects in cancer patients. Therefore, the identification of natural-based compounds, which have selectively inhibiting target proteins with limited toxicity that can facilitate the therapeutic approaches against CRC. In this existing approach, which highlights the binding efficacy of our anthraquinone compound, purpurin against phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) protein restrains the CRC cell growth by inhibiting phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), cell proliferation, and inducing apoptosis signaling. Primarily, purpurin (36 μM) exposed to HCT-116 cells and incubated for 24 and 48 h could induce reactive oxygen species production, subsequently alter mitochondrion membrane, and increase the apoptotic cells in HCT-116. LHPP, a kind of histidine phosphatase protein, has been considered as a tumor suppressor in numerous carcinomas. However, purpurin-mediated LHPP proteins and its associated molecular events in CRC remain unclear. In our docking studies revealed that purpurin has been strongly interacts with LHPP via hydrophobic and hydrophilic binding interaction. Western blot results confirmed that purpurin enhances the expression of LHPP protein, thereby inhibits the expression of phosphorylated-PI3K/AKT, EGFR, cyclin-D1, PCNA in HCT-116 cells. Moreover, purpurin induces messenger RNA expression of apoptotic genes (Bax, CASP-9, and CASP-3) in HCT-116 cells. Thus, we conclude that purpurin could be a natural and useful compound, which inhibits the growth of CRC cells through the activation of LHPP proteins.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Colorectal and Anal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xie Song
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
14
|
Lin S, Liu C, Han X, Zhong H, Cheng C. Viral Nanoparticle System: An Effective Platform for Photodynamic Therapy. Int J Mol Sci 2021; 22:ijms22041728. [PMID: 33572365 PMCID: PMC7916136 DOI: 10.3390/ijms22041728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy due to its efficiency and accuracy. The photosensitizer is delivered to the target lesion and locally activated. Viral nanoparticles (VNPs) have been explored as delivery vehicles for PDT in recent years because of their favorable properties, including simple manufacture and good safety profile. They have great potential as drug delivery carriers in medicine. Here, we review the development of PDT photosensitizers and discuss applications of VNP-mediated photodynamic therapies and the performance of VNPs in the treatment of tumor cells and antimicrobial therapy. Furthermore, future perspectives are discussed for further developing novel viral nanocarriers or improving existing viral vectors.
Collapse
Affiliation(s)
| | - Chun Liu
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| | - Xiao Han
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| | | | - Cui Cheng
- Correspondence: (C.L.); (X.H.); (C.C.); Tel.: +86-591-8372-5260 (C.C.)
| |
Collapse
|
15
|
Luo Y, Jia T, Fang J, Liu D, Saikam V, Sheng X, Iyer SS. Rapid, user-friendly, and inexpensive detection of azidothymidine. Anal Bioanal Chem 2021; 413:1999-2006. [PMID: 33484329 DOI: 10.1007/s00216-021-03168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022]
Abstract
Strict adherence to highly active antiretroviral therapy (HAART) is very important to improve the quality of life for HIV-positive patients to reduce new infections and determine treatment success. Azidothymidine (AZT) is an antiretroviral drug commonly used in HAART treatment. In this research, an "add, mix, and measure" assay was developed to detect AZT within minutes. Three different probes designed to release fluorophores when samples containing AZT are added were synthesized and characterized. The limit of detection to AZT in simulated urine samples was determined to be 4 μM in 5 min for one of the probes. This simple and rapid point-of-care test could potentially be used by clinicians and health care workers to monitor the presence of AZT in low resource settings.
Collapse
Affiliation(s)
- Ying Luo
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Tianwei Jia
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Jieqiong Fang
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Dandan Liu
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Varma Saikam
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Xiaolin Sheng
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA
| | - Suri S Iyer
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 161 Jesse Hill Jr. Drive, Atlanta, GA, 30302, USA.
| |
Collapse
|
16
|
Drasar PB, Khripach VA. Growing Importance of Natural Products Research. Molecules 2019; 25:molecules25010006. [PMID: 31861374 PMCID: PMC6983153 DOI: 10.3390/molecules25010006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Pavel B. Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
- Correspondence:
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Academician V. F. Kuprevich Street, BY-220141 Minsk, Belarus;
| |
Collapse
|