1
|
Tian F, Li M, Wu S, Li L, Hu H. A hybrid and scalable nanofabrication approach for bio-inspired bactericidal silicon nanospike surfaces. Colloids Surf B Biointerfaces 2023; 222:113092. [PMID: 36577343 DOI: 10.1016/j.colsurfb.2022.113092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Insects and plants exhibit bactericidal properties through surface nanostructures, such as nanospikes, which physically kill bacteria without antibiotics or chemicals. This is a promising new avenue for achieving antibacterial surfaces. However, the existing methods for fabricating nanospikes are incapable of producing uniform nanostructures on a large scale and in a cost-effective manner. In this paper, a scalable nanofabrication method involving the application of nanosphere lithography and reactive ion etching for constructing nanospike surfaces is demonstrated. Low-cost silicon nanospikes with uniform spacing that were sized similarly to biological nanospikes on cicada wings with a 4-inch wafer scale were fabricated. The spacing, tip radius, and base diameter of the silicon nanospikes were controlled precisely by adjusting the nanosphere diameters, etching conditions, and diameter reduction. The bactericidal properties of the silicon nanospikes with 300 nm spacing were measured quantitatively using the standard viability plate count method; they killed E. coli cells with 59 % efficiency within 30 h. The antibacterial ability of the nanospike surface was further indicated by the morphological differences between bacteria observed in the scanning electron microscopic images as well as the live/dead stains of fluorescence signals. The fabrication process combined the advantages of both top-down and bottom-up methods and was a significant step toward affordable bio-inspired antibacterial surfaces.
Collapse
Affiliation(s)
- Feng Tian
- ZJUI Institute, International Campus, Zhejiang University, State Key laboratory of Fluidic Power & Mechanical Systems, Haining 314400, China; School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027 China
| | - Meixi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoxiong Wu
- ZJUI Institute, International Campus, Zhejiang University, State Key laboratory of Fluidic Power & Mechanical Systems, Haining 314400, China; School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027 China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Huan Hu
- ZJUI Institute, International Campus, Zhejiang University, State Key laboratory of Fluidic Power & Mechanical Systems, Haining 314400, China; School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027 China.
| |
Collapse
|
2
|
Saraeva I, Tolordava E, Yushina Y, Sozaev I, Sokolova V, Khmelnitskiy R, Sheligyna S, Pallaeva T, Pokryshkin N, Khmelenin D, Ionin A, Semenova A, Kudryashov S. Direct Bactericidal Comparison of Metal Nanoparticles and Their Salts against S. aureus Culture by TEM and FT-IR Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3857. [PMID: 36364634 PMCID: PMC9657403 DOI: 10.3390/nano12213857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
We report the bactericidal effect of Ag and Cu NPs with different concentrations on methicillin-resistant S. aureus strain in comparison to the effect of AgNO3 and CuCl2 solutions, characterized by microbiological tests, TEM and Fourier-transform infrared spectroscopy. NPs were produced by nanosecond laser ablation in distilled water and characterized by scanning electron microscopy, UV-vis, energy dispersive X-ray, FT-IR spectroscopy, as well as X-ray diffraction, dynamic light scattering size and zeta-potential measurements. Microbiological tests showed antibacterial activity of NPs and metal ion-containing salts. Comparative FT-IR spectroscopy of bacteria, treated with metal NPs and salts, showed the broadening of amide I and II bands, a CH2-related peak and its frequency decrease, indicating the increase of membrane fluidity. The main mechanisms of the antibacterial effect were proposed: Ag and Cu NPs release ions and ROS, which result in lipid peroxidation; AgNO3 forms precipitates on the cell surface, which lead to the mechanical rupture of the membrane and subsequent possible penetration of the precipitates in the emerged damaged spots, complete destruction of the membrane and bacterial death; Cu ions from the CuCl2 solution cause damage to phosphorus- and sulfur-containing biomolecules, which leads to disruption of intracellular biochemical processes. The theories were confirmed by FT-IR spectroscopy and TEM.
Collapse
Affiliation(s)
- Irina Saraeva
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Eteri Tolordava
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
- N. F. Gamaleya Federal Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Yulia Yushina
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Islam Sozaev
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vera Sokolova
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Roman Khmelnitskiy
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana Sheligyna
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Pallaeva
- Institute of Crystallography, Branch of the Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Nikolay Pokryshkin
- Faculty of Physics, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Khmelenin
- Institute of Crystallography, Branch of the Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Andrey Ionin
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia Semenova
- V. M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences, 109316 Moscow, Russia
| | - Sergey Kudryashov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
4
|
Dizaji AN, Ozek NS, Yilmaz A, Aysin F, Yilmaz M. Gold nanorod arrays enable highly sensitive bacterial detection via surface-enhanced infrared absorption (SEIRA) spectroscopy. Colloids Surf B Biointerfaces 2021; 206:111939. [PMID: 34186307 DOI: 10.1016/j.colsurfb.2021.111939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Infrared (IR) spectroscopy is a unique and powerful method in the identification, characterization, and classification of chemical and biological molecules. However, the low absorbance of biological molecules has arisen as a major bottleneck and inhibits the application of IR in practical applications. To overcome this limitation, in the last four decades, surface-enhanced IR absorption (SEIRA) spectroscopy has been proposed and has become the focus of interest in various applications. In this study, for the first time, we proposed the employment of 3D anisotropic gold nanorod arrays (GNAs) as a highly active SEIRA platform in bacterial detection. For this, GNA platforms were fabricated through an oblique angle deposition (OAD) approach by using a physical vapor deposition (PVD) system. OAD of gold at proper deposition angle (10°) created closely-packed and columnar gold nanorod structures onto the glass slides in a well-controlled manner. GNA platform was tested as a SEIRA system in three different species of bacteria (Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) by collecting IR spectra of each bacteria from different parts of GNA. The employment of GNA provided robust IR spectra with high reproducibility and signal-to-noise ratio. For the comparison, IR spectra of each bacteria were collected from aluminum foil and a smooth gold surface (SGS). No or very low IR spectra were observed in comparison to the GNA platform for these substrates. Unsupervised (PCA, HCA) and supervised (SIMCA, LDA, and SVM classification) machine learning analysis of bacteria spectra obtained from GNA substrate indicated that all bacteria samples can be detected and identified without using a label-containing biosensor, in a fast and simple manner.
Collapse
Affiliation(s)
- Araz Norouz Dizaji
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey; East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey
| | - Nihal Simsek Ozek
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Biology, Ataturk University, 25240 Erzurum, Turkey
| | - Asli Yilmaz
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Molecular Biology and Genetics, Ataturk University, 25240 Erzurum, Turkey
| | - Ferhunde Aysin
- East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Biology, Ataturk University, 25240 Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey; East Anatolia High Technology Application and Research Center (DAYTAM), Ataturk University, 25240 Erzurum, Turkey; Department of Nanoscience and Nanoengineering, Ataturk University, 25240 Erzurum, Turkey.
| |
Collapse
|
5
|
In Vitro Destruction of Pathogenic Bacterial Biofilms by Bactericidal Metallic Nanoparticles via Laser-Induced Forward Transfer. NANOMATERIALS 2020; 10:nano10112259. [PMID: 33203093 PMCID: PMC7697692 DOI: 10.3390/nano10112259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
A novel, successful method of bactericidal treatment of pathogenic bacterial biofilms in vitro by laser-induced forward transfer of metallic nanoparticles from a polyethylene terephthalate polymeric substrate was suggested. Transferred nanoparticles were characterized by scanning and transmission electron microscopy, energy-dispersive X-ray and Raman spectroscopy. The antibacterial modality of the method was tested on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas Aeruginosa) bacterial biofilms in vitro, revealing their complete destruction. The proposed simple, cost-effective and potentially mobile biofilm treatment method demonstrated its high and broad bactericidal efficiency.
Collapse
|
6
|
Lee DJ, Kim DY. UV Irradiation-Induced SERS Enhancement in Randomly Distributed Au Nanostructures. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3842. [PMID: 32660155 PMCID: PMC7411748 DOI: 10.3390/s20143842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Currently used platforms for surface-enhanced Raman scattering (SERS) sensors generally employ metallic nanostructures for enrichment of the plasmonic hotspots in order to provide higher Raman signals, but this procedure is still considered challenging for analyte-surface affinity. This study reports a UV irradiation-induced SERS enhancement that amplifies the interactions between the analytes and metallic surfaces. The UV light can play critical roles in the surface cleaning to improve the SERS signal by removing the impurities from the surfaces and the formation of the negatively charged adsorbed oxygen species on the Au surfaces to enhance the analyte-surface affinity. To evaluate this scenario, we prepared randomly distributed Au nanostructures via thermal annealing with a sputtered Au thin film. The UV light of central wavelength 254 nm was then irradiated on the Au nanostructures for 60 min. The SERS efficiency of the Au nanostructures was subsequently evaluated using rhodamine 6G molecules as the representative Raman probe material. The Raman signal of the Au nanostructures after UV treatment was enhanced by up to approximately 68.7% compared to that of those that did not receive the UV treatment. We expect that the proposed method has the potential to be applied to SERS enhancement with various plasmonic platforms.
Collapse
Affiliation(s)
- Dong-Jin Lee
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Korea;
| | - Dae Yu Kim
- Inha Research Institute for Aerospace Medicine, Inha University, Incheon 22212, Korea;
- Department of Electrical Engineering, College of Engineering, Inha University, Incheon 22212, Korea
| |
Collapse
|