1
|
La Spada G, Miniero DV, Rullo M, Cipolloni M, Delre P, Colliva C, Colella M, Leonetti F, Liuzzi GM, Mangiatordi GF, Giacchè N, Pisani L. Structure-based design of multitargeting ChEs-MAO B inhibitors based on phenyl ring bioisosteres: AChE/BChE selectivity switch and drug-like characterization. Eur J Med Chem 2024; 274:116511. [PMID: 38820854 DOI: 10.1016/j.ejmech.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
A structure-based drug design approach was focused on incorporating phenyl ring heterocyclic bioisosteres into coumarin derivative 1, previously reported as potent dual AChE-MAO B inhibitor, with the aim of improving drug-like features. Structure-activity relationships highlighted that bioisosteric rings were tolerated by hMAO B enzymatic cleft more than hAChE. Interestingly, linker homologation at the basic nitrogen enabled selectivity to switch from hAChE to hBChE. In the present work, we identified thiophene-based isosteres 7 and 15 as dual AChE-MAO B (IC50 = 261 and 15 nM, respectively) and BChE-MAO B (IC50 = 375 and 20 nM, respectively) inhibitors, respectively. Both 7 and 15 were moderately water-soluble and membrane-permeant agents by passive diffusion (PAMPA-HDM). Moreover, they were able to counteract oxidative damage induced by both H2O2 and 6-OHDA in SH-SY5Y cells and predicted to penetrate into CNS in a cell-based model mimicking blood-brain barrier. Molecular dynamics (MD) simulations shed light on key differences in AChE and BChE recognition processes promoted by the basic chain homologation from 7 to 15.
Collapse
Affiliation(s)
- Gabriella La Spada
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Dept. of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Mariagrazia Rullo
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Marco Cipolloni
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Pietro Delre
- CNR, Institute of Crystallography, 70126, Bari, Italy
| | - Carolina Colliva
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Marco Colella
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Francesco Leonetti
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Dept. of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | | | - Nicola Giacchè
- Tes Pharma s.r.l., via Palmiro Togliatti 20, 06073, Corciano, PG, Italy
| | - Leonardo Pisani
- Dept. of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
2
|
Mishra PS, Kumar A, Kaur K, Jaitak V. Recent Developments in Coumarin Derivatives as Neuroprotective Agents. Curr Med Chem 2024; 31:5702-5738. [PMID: 37455459 DOI: 10.2174/0929867331666230714160047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases are among the diseases that cause the foremost burden on the health system of the world. The diseases are multifaceted and difficult to treat because of their complex pathophysiology, which includes protein aggregation, neurotransmitter breakdown, metal dysregulation, oxidative stress, neuroinflammation, excitotoxicity, etc. None of the currently available therapies has been found to be significant in producing desired responses without any major side effects; besides, they only give symptomatic relief otherwise indicated off-episode relief. Targeting various pathways, namely choline esterase, monoamine oxidase B, cannabinoid system, metal chelation, β-secretase, oxidative stress, etc., may lead to neurodegeneration. By substituting various functional moieties over the coumarin nucleus, researchers are trying to produce safer and more effective neuroprotective agents. OBJECTIVES This study aimed to review the current literature to produce compounds with lower side effects using coumarin as a pharmacophore. METHODS In this review, we have attempted to compile various synthetic strategies that have been used to produce coumarin and various substitutional strategies used to produce neuroprotective agents from the coumarin pharmacophore. Moreover, structure-activity relationships of substituting coumarin scaffold at various positions, which could be instrumental in designing new compounds, were also discussed. RESULTS The literature review suggested that coumarins and their derivatives can act as neuroprotective agents following various mechanisms. CONCLUSION Various studies have demonstrated the neuroprotective activity of coumarin due to an oxaheterocyclic loop, which allows binding with a broad array of proteins, thus motivating researchers to explore its potential as a lead against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Prakash Shyambabu Mishra
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Amit Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Kamalpreet Kaur
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| | - Vikas Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda (Pb.), 151401, India
| |
Collapse
|
3
|
Zhang C, Zhang Y, Lv Y, Guo J, Gao B, Lu Y, Zang A, Zhu X, Zhou T, Xie Y. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:100-117. [PMID: 36519319 PMCID: PMC9762789 DOI: 10.1080/14756366.2022.2134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China,Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,CONTACT Yuanyuan X. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, P. R. China
| |
Collapse
|
4
|
Singh AK, Kim SM, Oh JM, Abdelgawad MA, Ghoneim MM, Rangarajan TM, Kumar S, Sudevan ST, Trisciuzzi D, Nicolotti O, Kim H, Mathew B. Exploration of a new class of monoamine oxidase B inhibitors by assembling benzyloxy pharmacophore on halogenated chalcones. Chem Biol Drug Des 2023; 102:271-284. [PMID: 37011915 DOI: 10.1111/cbdd.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Eight derivatives of benzyloxy-derived halogenated chalcones (BB1-BB8) were synthesized and tested for their ability to inhibit monoamine oxidases (MAOs). MAO-A was less efficiently inhibited by all compounds than MAO-B. Additionally, the majority of the compounds displayed significant MAO-B inhibitory activities at 1 μM with residual activities of less than 50%. With an IC50 value of 0.062 μM, compound BB4 was the most effective in inhibiting MAO-B, followed by compound BB2 (IC50 = 0.093 μM). The lead molecules showed good activity than the reference MAO-B inhibitors (Lazabemide IC50 = 0.11 μM and Pargyline Pargyline IC50 = 0.14). The high selectivity index (SI) values for MAO-B were observed in compounds BB2 and BB4 (430.108 and 645.161, respectively). Kinetics and reversibility experiments revealed that BB2 and BB4 were reversible competitive MAO-B inhibitors with Ki values of 0.030 ± 0.014 and 0.011 ± 0.005 μM, respectively. Swiss target prediction confirmed the high probability in the targets of MAO-B for both compounds. Hypothetical binding mode revealed that the BB2 or BB4 is similarly oriented to the binding cavity of MAO-B. Based on the modelling results, BB4 showed a stable confirmation during the dynamic simulation. From these results, it was concluded that BB2 and BB4 were potent selective reversible MAO-B inhibitors and they can be considered drug candidates for treating related neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Seong-Min Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| | | | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
5
|
Miličević A, Šinko G. Evaluation of the Key Structural Features of Various Butyrylcholinesterase Inhibitors Using Simple Molecular Descriptors. Molecules 2022; 27:molecules27206894. [PMID: 36296489 PMCID: PMC9610766 DOI: 10.3390/molecules27206894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we developed several QSAR models based on simple descriptors (such as topological and constitutional) to estimate butyrylcholinesterase (BChE) inhibition potency, pKi (or pIC50), of a set of 297 (289 after exclusion of outliers) structurally different compounds. The models were similar to the best model that we obtained previously for acetylcholinesterase AChE and were based on the valence molecular connectivity indices of second and third order (2χv and 3χv), the number of aliphatic hydroxyl groups (nOH), AlogP Ghose-Crippen octanol-water partition coeff. (logP), and O-060-atom-centred fragments (Al-O-Ar, Ar-O-Ar, R..O..R and R-O-C=X). The best models with two and three descriptors yielded r = 0.787 and S.E. = 0.89, and r = 0.827 and S.E. = 0.81, respectively. We also correlated nine scoring functions, calculated for 20 ligands whose complexes with BChE we found in the Protein Data Bank as crystal structures to pKi (or pIC50). The best correlations yielded PLP1 and PLP2 (Piecewise Linear Pairwise potential functions) with r = 0.619 and 0.689, respectively. Correlation with certain simple topological and constitutional descriptors yielded better results, e.g., 3χv (r = 0.730), on the same set of compounds (N = 20).
Collapse
|
6
|
Pisani L, Catto M, Muncipinto G, Nicolotti O, Carrieri A, Rullo M, Stefanachi A, Leonetti F, Altomare C. A twenty-year journey exploring coumarin-based derivatives as bioactive molecules. Front Chem 2022; 10:1002547. [PMID: 36300022 PMCID: PMC9590106 DOI: 10.3389/fchem.2022.1002547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The coumarin core (i.e., 1-benzopyran-2 (2H)-one) is a structural motif highly recurrent in both natural products and bioactive molecules. Indeed, depending on the substituents and branching positions around the byciclic core, coumarin-containing compounds have shown diverse pharmacological activities, ranging from anticoagulant activities to anti-inflammatory, antimicrobial, anti-HIV and antitumor effects. In this survey, we have reported the main scientific results of the 20-years investigation on the coumarin core, exploited by the research group headed by Prof. Angelo Carotti (Bari, Italy) either as a scaffold or a pharmacophore moiety in designing novel biologically active small molecules.
Collapse
Affiliation(s)
- Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Angela Stefanachi, Francesco Leonetti,
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Angela Stefanachi, Francesco Leonetti,
| | - Cosimo Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Lakra N, Matore BW, Banjare P, Singh R, Singh J, Roy PP. Pharmacophore based virtual screening of cholinesterase inhibitors: search of new potential drug candidates as antialzheimer agents. In Silico Pharmacol 2022; 10:18. [PMID: 36187087 PMCID: PMC9521886 DOI: 10.1007/s40203-022-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a distinctive medical condition characterized by loss of memory, orientation, and cognitive impairments, which is an exceptionally universal form of neurodegenerative disease. The statistical data suggested that it is the 3rd major cause of death in older persons. Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) inhibitors play a vital role in the treatment of AD. Coumarins, natural derivatives, are reported as cholinesterase inhibitors and emerges as a promising scaffold for design of ligands targeting enzymes and pathological alterations related to AD. In this regard, the 3D QSAR pharmacophore models were developed for coumarin scaffold containing BChE and AChE inhibitors. Several 3D QSAR pharmacophore models were developed with FAST, BEST, and CEASER methods, and finally, statistically robust models (based on correlation coefficient, cost value, and RMSE value) were selected for further analysis for both targets. The important features ((HBA 1, HBA 2, HY, RA (BChE) HBA 1, HBA 2, HY, PI, (AChE)) were identified for good inhibitory activity of coumarin derivatives. Finally, the selected models were applied to various database compounds to find potential BChE and AChE inhibitors, and we found 13 for BChE and 1 potent compound for AChE with an estimated activity of IC50 < 10 µM. Further, the Lipinski filters, and ADMET analysis supports the selected compounds to become a drug candidate. These selected BChE and AChE inhibitors can be used in the treatment of AD. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-022-00133-1.
Collapse
Affiliation(s)
- Nisha Lakra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Purusottam Banjare
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Rekha Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Jagadish Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| | - Partha Pratim Roy
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009 India
| |
Collapse
|
8
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
9
|
Rullo M, Cipolloni M, Catto M, Colliva C, Miniero DV, Latronico T, de Candia M, Benicchi T, Linusson A, Giacchè N, Altomare CD, Pisani L. Probing Fluorinated Motifs onto Dual AChE-MAO B Inhibitors: Rational Design, Synthesis, Biological Evaluation, and Early-ADME Studies. J Med Chem 2022; 65:3962-3977. [PMID: 35195417 DOI: 10.1021/acs.jmedchem.1c01784] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bioisosteric H/F or CH2OH/CF2H replacement was introduced in coumarin derivatives previously characterized as dual AChE-MAO B inhibitors to probe the effects on both inhibitory potency and drug-likeness. Along with in vitro screening, we investigated early-ADME parameters related to solubility and lipophilicity (Sol7.4, CHI7.4, log D7.4), oral bioavailability and central nervous system (CNS) penetration (PAMPA-HDM and PAMPA-blood-brain barrier (BBB) assays, Caco-2 bidirectional transport study), and metabolic liability (half-lives and clearance in microsomes, inhibition of CYP3A4). Both specific and nonspecific tissue toxicities were determined in SH-SY5Y and HepG2 lines, respectively. Compound 15 bearing a -CF2H motif emerged as a water-soluble, orally bioavailable CNS-permeant potent inhibitor of both human AChE (IC50 = 550 nM) and MAO B (IC50 = 8.2 nM, B/A selectivity > 1200). Moreover, 15 behaved as a safe and metabolically stable neuroprotective agent, devoid of cytochrome liability.
Collapse
Affiliation(s)
- Mariagrazia Rullo
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | | | - Marco Catto
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | | | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", via Orabona, 4, 70125 Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", via Orabona, 4, 70125 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | | | - Anna Linusson
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Nicola Giacchè
- TES Pharma s.r.l., Corso Vannucci 47, 06121 Perugia, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
10
|
Bouhaoui A, Eddahmi M, Dib M, Khouili M, Aires A, Catto M, Bouissane L. Synthesis and Biological Properties of Coumarin Derivatives. A Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202101346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Abderrazzak Bouhaoui
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mohammed Eddahmi
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mustapha Dib
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Mostafa Khouili
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences CITAB University of Trás-os-Montes e Alto Douro UTAD Vila Real Portugal
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences University of Bari Aldo Moro via E. Orabona 4 70125 Bari Italy
| | - Latifa Bouissane
- Organic and Analytical Chemistry Laboratory Faculty of Sciences and Technologies Sultan Moulay Slimane University BP 523 23000 Beni-Mellal Morocco
| |
Collapse
|
11
|
Zhang C, Lv Y, Bai R, Xie Y. Structural exploration of multifunctional monoamine oxidase B inhibitors as potential drug candidates against Alzheimer's disease. Bioorg Chem 2021; 114:105070. [PMID: 34126574 DOI: 10.1016/j.bioorg.2021.105070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
AD is one of the most typical neurodegenerative disorders that suffer many seniors worldwide. Recently, MAO inhibitors have received increasing attention not only for their roles involved in monoamine neurotransmitters metabolism and oxidative stress but also for their additional neuroprotective and neurorescue effects against AD. The curiosity in MAO inhibitors is reviving, and novel MAO-B inhibitors recently developed with ancillary activities (e.g., Aβ aggregation and AChE inhibition, anti-ROS and chelating activities) have been proposed as multitarget drugs foreshadowing a positive outlook for the treatment of AD. The current review describes the recent development of the design, synthesis, and screening of multifunctional ligands based on MAO-B inhibition for AD therapy. Structure-activity relationships and rational design strategies of the synthetic or natural product derivatives (chalcones, coumarins, chromones, and homoisoflavonoids) are discussed.
Collapse
Affiliation(s)
- Changjun Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Renren Bai
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
12
|
Kobzev MS, Titov AA, Alexandrova EV, Purgatorio R, Catto M, Sorokina EA, Borisova TN, Varlamov AV, Altomare CD, Voskressensky LG. Synthesis of 8-phenyl substituted 3-benzazecines with allene moiety, their thermal rearrangement and evaluation as acetylcholinesterase inhibitors. Mol Divers 2021; 26:1243-1247. [PMID: 33538985 DOI: 10.1007/s11030-021-10185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/16/2021] [Indexed: 11/30/2022]
Abstract
Various 4'-R-substituted phenyl azacyclic allenes were synthesized in good yields, and their thermal transformations were studied. For the first time, the obtained rearrangement products-new N-bridged cyclopenta[a]indenes, and the corresponding parent allenes were evaluated as potential inhibitors of acetyl- and butyrylcholinesterase. Among the tested compounds, the allene derivative 2g proved to competitively inhibit human AChE with inhibition constant value (Ki) in the low micromolar range.
Collapse
Affiliation(s)
- Maxim S Kobzev
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Alexander A Titov
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation.
| | - Elena V Alexandrova
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elena A Sorokina
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Tatiana N Borisova
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Alexey V Varlamov
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship, University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russian Federation
| |
Collapse
|
13
|
Recent Trends in Enzyme Inhibition and Activation in Drug Design. Molecules 2020; 26:molecules26010017. [PMID: 33375159 PMCID: PMC7792938 DOI: 10.3390/molecules26010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
It is known that enzymes are involved in many pathological conditions, such as inflammation, diabetes, microbial infections, HIV, neoplastic, neglected diseases and others [...]
Collapse
|
14
|
Rodríguez-Enríquez F, Viña D, Uriarte E, Laguna R, Matos MJ. 7-Amidocoumarins as Multitarget Agents against Neurodegenerative Diseases: Substitution Pattern Modulation. ChemMedChem 2020; 16:179-186. [PMID: 32700464 DOI: 10.1002/cmdc.202000454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 02/06/2023]
Abstract
This study explores the potential of 7-amidocoumarins as multitarget agents against Parkinson's and Alzheimer's diseases, by modulating the substitution patterns within the scaffold. Sixteen compounds were synthesized via 7-amino-4-methylcoumarin acylation, and in vitro evaluation of the molecules against hMAO-A, hMAO-B, hAChE, hBuChE and hBACE1 was performed. Five compounds turned out to be potent and selective hMAO-B inhibitors in the nanomolar range, six displayed inhibitory activity of hMAO-A in the low micromolar range, one showed hAChE inhibitory activity and another one hBACE1 inhibitory activity. MAO-B reversibility profile of 7-(4'-chlorobenzamido)-4-methylcoumarin (10) was investigated, with this compound being a reversible inhibitor. Neurotoxicity on motor cortex neurons and neuroprotection against H2 O2 were also studied, corroborating the safety profile of these molecules. Finally, theoretical ADME properties were also calculated, showing these molecules as good candidates for the optimization of a lead compound. Results suggest that by modulating the substitution pattern at position 7 of the scaffold, selective or multitarget molecules can be achieved.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Enríquez
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912, Santiago, Chile
| | - Reyes Laguna
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria J Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| |
Collapse
|
15
|
Jiang X, Guo J, Lv Y, Yao C, Zhang C, Mi Z, Shi Y, Gu J, Zhou T, Bai R, Xie Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg Med Chem 2020; 28:115550. [PMID: 32503694 DOI: 10.1016/j.bmc.2020.115550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhisheng Mi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|