1
|
Radulova G, Kapogianni A, Cholakova G, Iliev S, Ivanova A, Bogoeva V, Tsacheva I. Galectin-3 - A novel ligand of complement protein C1q. Int J Biol Macromol 2024; 262:129930. [PMID: 38325676 DOI: 10.1016/j.ijbiomac.2024.129930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
In the present study we report a novel interaction of human C1q, a primary activator of the Complement system, with human Galectin-3 (Gal-3). We investigated the potential recognition between C1q and Gal-3 on a solid hydrophobic surface by ELISA, by fluorescence spectroscopy, molecular docking and molecular dynamics (MD). The data showed that C1q and Gal-3 had a pronounced affinity for protein-protein interaction and supramolecular binding, locating the binding sites within the globular domains of C1q (gC1q) and on the backside of the carbohydrate recognition domain (CRD) of Gal-3. Fluorescence spectroscopy gave quantitative assessment of the recognition with KD value of 0.04 μM. MD analysis showed that when the active AAs of the two proteins interacted, electrostatic attraction, aided by a large number of hydrogen bonds, was dominant for the stabilization of the complex. When the contact of C1q and Gal-3 was not limited to active residues, the complex between them was stabilized mainly by Van der Waals interactions and smaller in number but stronger hydrogen bonds. This is the first report analyzing the interaction of Gal-3 with C1q, which could open the way to new applications of this protein-protein complex.
Collapse
Affiliation(s)
- Gabriela Radulova
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Bulgaria
| | | | - Ginka Cholakova
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Bulgaria
| | - Stoyan Iliev
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Bulgaria
| | - Anela Ivanova
- Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, Bulgaria
| | - Vanya Bogoeva
- Bulgarian Academy of Sciences, Institute of Molecular biology "Rumen Tsanev", Bulgaria
| | - Ivanka Tsacheva
- Sofia University "St. Kliment Ohridski", Faculty of Biology, Bulgaria.
| |
Collapse
|
2
|
Núñez-Franco R, Peccati F, Jiménez-Osés G. A Computational Perspective on Molecular Recognition by Galectins. Curr Med Chem 2021; 29:1219-1231. [PMID: 34348610 DOI: 10.2174/0929867328666210804093058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
This article presents an overview of recent computational studies dedicated to the analysis of binding between galectins and small-molecule ligands. We first present a summary of the most popular simulation techniques adopted for calculating binding poses and binding energies, and then discuss relevant examples reported in the literature for the three main classes of galectins (dimeric, tandem and chimera). We show that simulation of galectin-ligand interactions is a mature field which has proven invaluable for completing and unraveling experimental observations. Future perspectives to further improve the accuracy and cost-effectiveness of existing computational approaches will involve the development of new schemes to account for solvation and entropy effects, which represent the main current limitations to the accuracy of computational results.
Collapse
Affiliation(s)
- Reyes Núñez-Franco
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio. Spain
| |
Collapse
|
3
|
Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures. Biomolecules 2021; 11:biom11040595. [PMID: 33919637 PMCID: PMC8074145 DOI: 10.3390/biom11040595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins bind various pathogens through recognition of distinct carbohydrate structures. In this work, we examined the binding of four human galectins to the Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an O-chain-containing lipopolysaccharide (LPS), whereas NTHi is not capsulated and its LPS, termed lipooligosacccharide (LOS), does not contain O-chain. Binding assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not galectin-1, bind to Kpn and NTHi cells, and confocal microscopy attested binding to bacterial cells in suspension. The three galectins bound to array-printed Kpn LPS. Moreover, analysis of galectin binding to mutant Kpn cells evidenced that the O-chain is the docking point for galectins on wild type Kpn. Galectins-3, -4, and -8 also bound the NTHi LOS. Microarray-assisted comparison of the binding to full-length and truncated LOSs, as well as to wild type and mutant cells, supported LOS involvement in galectin binding to NTHi. However, deletion of the entire LOS oligosaccharide chain actually increased binding to NTHi cells, indicating the availability of other ligands on the bacterial surface, as similarly inferred for Kpn cells devoid of both O-chain and capsule. Altogether, the results illustrate galectins’ versatility for recognizing different bacterial structures, and point out the occurrence of so far overlooked galectin ligands on bacterial surfaces.
Collapse
|
4
|
López de Los Santos Y, Bernard DN, Egesborg P, Létourneau M, Lafortune C, Cuneo MJ, Urvoas A, Chatenet D, Mahy JP, St-Pierre Y, Ricoux R, Doucet N. Binding of a Soluble meso-Tetraarylporphyrin to Human Galectin-7 Induces Oligomerization and Modulates Its Pro-Apoptotic Activity. Biochemistry 2020; 59:4591-4600. [PMID: 33231438 DOI: 10.1021/acs.biochem.0c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.
Collapse
Affiliation(s)
- Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Philippe Egesborg
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Clara Lafortune
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Agathe Urvoas
- Institut de biologie intégrative de la cellule (I2BC), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - David Chatenet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Jean-Pierre Mahy
- Laboratoire de chimie bioorganique et bioinorganique, Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - Yves St-Pierre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Rémy Ricoux
- Laboratoire de chimie bioorganique et bioinorganique, Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada.,PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|