1
|
Dimitrakopoulou-Strauss A, Pan L, Sachpekidis C. Non-[ 18F]FDG PET-Radiopharmaceuticals in Oncology. Pharmaceuticals (Basel) 2024; 17:1641. [PMID: 39770483 PMCID: PMC11677833 DOI: 10.3390/ph17121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Molecular imaging is a growing field, driven by technological advances, such as the improvement of PET-CT scanners through the introduction of digital detectors and scanners with an extended field of view, resulting in much higher sensitivity and a variety of new specific radiopharmaceuticals that allow the visualization of specific molecular pathways and even theragnostic approaches. In oncology, the development of dedicated tracers is crucial for personalized therapeutic approaches. Novel peptides allow the visualization of many different targets, such as PD-1 and PD-L1 expression, chemokine expression, HER expression, T-cell imaging, microenvironmental imaging, such as FAP imaging, and many more. In this article, we review recent advances in the development of non-[18F]FDG PET radiopharmaceuticals and their current clinical applications in oncology, as well as some future aspects.
Collapse
Affiliation(s)
- Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
2
|
Park JY, Park SM, Lee TS, Kang SY, Kim JY, Yoon HJ, Kim BS, Moon BS. Radiopharmaceuticals for Skeletal Muscle PET Imaging. Int J Mol Sci 2024; 25:4860. [PMID: 38732077 PMCID: PMC11084667 DOI: 10.3390/ijms25094860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The skeletal muscles account for approximately 40% of the body weight and are crucial in movement, nutrient absorption, and energy metabolism. Muscle loss and decline in function cause a decrease in the quality of life of patients and the elderly, leading to complications that require early diagnosis. Positron emission tomography/computed tomography (PET/CT) offers non-invasive, high-resolution visualization of tissues. It has emerged as a promising alternative to invasive diagnostic methods and is attracting attention as a tool for assessing muscle function and imaging muscle diseases. Effective imaging of muscle function and pathology relies on appropriate radiopharmaceuticals that target key aspects of muscle metabolism, such as glucose uptake, adenosine triphosphate (ATP) production, and the oxidation of fat and carbohydrates. In this review, we describe how [18F]fluoro-2-deoxy-D-glucose ([18F]FDG), [18F]fluorocholine ([18F]FCH), [11C]acetate, and [15O]water ([15O]H2O) are suitable radiopharmaceuticals for diagnostic imaging of skeletal muscles.
Collapse
Affiliation(s)
- Joo Yeon Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Sun Mi Park
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Tae Sup Lee
- Division of RI Applications, Korea Institute Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
| | - Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Ji-Young Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul 07804, Republic of Korea; (J.Y.P.); (S.M.P.); (S.Y.K.); (J.-Y.K.); (H.-J.Y.)
| |
Collapse
|
3
|
Herrero Alvarez N, Michel AL, Viray TD, Mayerhoefer ME, Lewis JS. 89Zr-DFO-Isatuximab for CD38-Targeted ImmunoPET Imaging of Multiple Myeloma and Lymphomas. ACS OMEGA 2023; 8:22486-22495. [PMID: 37396228 PMCID: PMC10308590 DOI: 10.1021/acsomega.3c00624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 07/04/2023]
Abstract
Multiple myeloma (MM) is the second most prevalent hematological malignancy. It remains incurable despite the availability of novel therapeutic approaches, marking an urgent need for new agents for noninvasive targeted imaging of MM lesions. CD38 has proven to be an excellent biomarker due to its high expression in aberrant lymphoid and myeloid cells relative to normal cell populations. Using isatuximab (Sanofi), the latest FDA-approved CD38-targeting antibody, we have developed Zirconium-89(89Zr)-labeled isatuximab as a novel immunoPET tracer for the in vivo delineation of MM and evaluated the extension of its applicability to lymphomas. In vitro studies validated the high binding affinity and specificity of 89Zr-DFO-isatuximab for CD38. PET imaging demonstrated the high performance of 89Zr-DFO-isatuximab as a targeted imaging agent to delineate tumor burden in disseminated models of MM and Burkitt's lymphoma. Ex vivo biodistribution studies confirmed that high accumulations of the tracer in bone marrow and bone skeleton correspond to specific disease lesions as they are reduced to background in blocking and healthy controls. This work demonstrates the promise of 89Zr-DFO-isatuximab as an immunoPET tracer for CD38-targeted imaging of MM and certain lymphomas. More importantly, its potential as an alternative to 89Zr-DFO-daratumumab holds great clinical relevance.
Collapse
Affiliation(s)
- Natalia Herrero Alvarez
- Department
of Radiology and Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Alexa L. Michel
- Department
of Radiology and Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Tara D. Viray
- Department
of Radiology and Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Marius E. Mayerhoefer
- Department
of Radiology and Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology and Program in Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Departments
of Pharmacology and Radiology, Weill Cornell
Medicine, New York, New York 10065, United
States
| |
Collapse
|
4
|
Garrastachu Zumarán P, García Megías I, Mangas Losada M, Mendoza Melero A, Villanueva Torres A, Boulvard Chollet X, Romero Robles L, Hernández Pérez PM, Ramírez Lasanta R, Delgado Bolton RC. Multitracer PET/CT with [ 18F]Fluorodeoxiglucose and [ 18F]Fluorocholine in the Initial Staging of Multiple Myeloma Patients Applying the IMPeTus Criteria: A Pilot Study. Diagnostics (Basel) 2023; 13:diagnostics13091570. [PMID: 37174961 PMCID: PMC10177931 DOI: 10.3390/diagnostics13091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Initial staging of patients diagnosed with multiple myeloma (MM) can lead to negative results using conventional diagnostic imaging workup, including [18F]Fluorodesoxiglucose ([18F]FDG) PET/CT. The aim of this prospective pilot study was to evaluate the diagnostic efficacy of [18F]Fluorocholine ([18F]FCH) PET/CT in the initial staging of MM patients who were candidates for autologous bone marrow transplant. Materials and Methods: The inclusion criteria of our study were: (a) patients diagnosed with MM; (b) candidates for autologous bone marrow transplant (AT); and (c) studied with [18F]FCH PET/CT and [18F]FDG PET/CT for initial staging less than 4 weeks apart. Imaging analysis included the presence of: bone marrow infiltration, focal bone lesions, and para-medullary or extra-medullary disease, according to the proposed IMPeTus criteria. The analysis was performed per lesion, per patient, and per location. Results: The study population included ten patients. Globally, [18F]FCH PET/CT showed bone marrow uptake in all the patients and visualised 16 more focal lesions than [18F]FDG PET/CT. One patient presented a plasmacytoma, detected by both tracers. Extra-medullary and para-medullary disease was identified with different degrees of uptake by both tracers. In summary, [18F]FCH PET seemed to be superior to [18F]FDG PET/CT in detecting focal bone lesions. SUVmax values were slightly higher in [18F]FCH PET/CT than in [18F]FDG PET/CT. Conclusions: Taking into account the small study population, according to our results, [18F]FCH PET/CT could be a useful tool for staging MM patients.
Collapse
Affiliation(s)
- Puy Garrastachu Zumarán
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - Irene García Megías
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - María Mangas Losada
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - Alejandro Mendoza Melero
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - Amós Villanueva Torres
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - Xavier Boulvard Chollet
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - Leonardo Romero Robles
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | | | - Rafael Ramírez Lasanta
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro, 26006 Logroño, Spain
- Centre for Biomedical Research of La Rioja (CIBIR), Fundación Rioja Salud, 26006 Logroño, Spain
| |
Collapse
|
5
|
Zhang S, Shang J, Ye W, Zhao T, Xu H, Zeng H, Wang L. Recent developments on the application of molecular probes in multiple myeloma: Beyond [18F]FDG. Front Bioeng Biotechnol 2022; 10:920882. [PMID: 36091426 PMCID: PMC9459033 DOI: 10.3389/fbioe.2022.920882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is a neoplastic plasma cell proliferative disorder characterized by various osteolytic bone destruction as a radiological morphological marker. Functional imaging, particularly nuclear medicine imaging, is a promising method to visualize disease processes before the appearance of structural changes by targeting specific biomarkers related to metabolism ability, tumor microenvironment as well as neoplastic receptors. In addition, by targeting particular antigens with therapeutic antibodies, immuno-PET imaging can support the development of personalized theranostics. At present, various imaging agents have been prepared and evaluated in MM at preclinical and clinical levels. A summary overview of molecular functional imaging in MM is provided, and commonly used radiotracers are characterized.
Collapse
Affiliation(s)
- Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jingjie Shang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hui Zeng, ; Lu Wang,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hui Zeng, ; Lu Wang,
| |
Collapse
|
6
|
Abstract
Multiple myeloma (MM) accounts for 0.9% of cancer diagnoses, and incidence and mortality rate have increased in previous years. 18F-fluorodeoxyglucose (FDG) PET-computed tomography (CT) is an established modality for MM evaluation. MR imaging is helpful where 18F-FDG PET-CT is lacking. To standardize PET reporting, methods like Italian Myeloma Criteria for PET Use and Deauville criteria have been studied. Tracers like 11C-acetate and 11C-choline/18F-fluoromethylcholine (FCH) have shown higher sensitivity and detected more focal lesions and diffuse involvement than 18F-FDG PET-CT. 18F-FCH showed higher maximum standardized uptake value than 18FDG. 11C-methionine appears to be the best radiopharmaceutical, apart from 18F-FDG, for evaluating MM.
Collapse
Affiliation(s)
- Angel Hemrom
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Avinash Tupalli
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abass Alavi
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
7
|
Dimitrakopoulou-Strauss A, Sachpekidis C, Lapa C. Editorial: Molecular Imaging in Multiple Myeloma: An Update and Future Perspectives. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:904502. [PMID: 39354967 PMCID: PMC11440837 DOI: 10.3389/fnume.2022.904502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 10/03/2024]
Affiliation(s)
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
8
|
Guha A, Vijan A, Agarwal U, Goda JS, Mahajan A, Shetty N, Khattry N. Imaging for Plasma Cell Dyscrasias: What, When, and How? Front Oncol 2022; 12:825394. [PMID: 35402253 PMCID: PMC8987930 DOI: 10.3389/fonc.2022.825394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Imaging plays a vital role in the diagnosis, response assessment, and follow-up of patients with plasma cell bone disease. The radiologic diagnostic paradigm has thus far evolved with developing technology and availability of better imaging platforms; however, the skewed availability of these imaging modalities in developed vis-à-vis the developing countries along with the lack of uniformity in reporting has led to a consensus on the imaging criteria for diagnosing and response assessment in plasma cell dyscrasia. Therefore, it is imperative for not only the radiologists but also the treating oncologist to be aware of the criteria and appropriate imaging modality to be used in accordance with the clinical question. The review will allow the treating oncologist to answer the following questions on the diagnostic, prognostic, and predictive abilities of various imaging modalities for plasma cell dyscrasia: a) What lesions can look like multiple myeloma (MM) but are not?; b) Does the patient have MM? To diagnose MM in a high-risk SMM patient with clinical suspicion, which modality should be used and why?; c) Is the patient responding to therapy on follow-up imaging once treatment is initiated?; d) To interpret commonly seen complications post-therapy, when is it a disease and when is the expected sequel to treatment? Fractures, red marrow reconversion?; and e) When is the appropriate time to flag a patient for further workup when interpreting MRI spine done for back pain in the elderly? How do we differentiate between commonly seen osteoporosis-related degenerative spine versus marrow infiltrative disorder?
Collapse
Affiliation(s)
- Amrita Guha
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- *Correspondence: Amrita Guha,
| | - Antariksh Vijan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
| | - Ujjwal Agarwal
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
| | - Jayant Sastri Goda
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Department of Radiation Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
| | - Nitin Shetty
- Department of Radiodiagnosis and Imaging, Tata Memorial Hospital, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Navin Khattry
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Mumbai, India
| |
Collapse
|
9
|
von Hinten J, Kircher M, Dierks A, Pfob CH, Higuchi T, Pomper MG, Rowe SP, Buck AK, Samnick S, Werner RA, Lapa C. Molecular Imaging in Multiple Myeloma-Novel PET Radiotracers Improve Patient Management and Guide Therapy. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:801792. [PMID: 39354963 PMCID: PMC11440847 DOI: 10.3389/fnume.2022.801792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/01/2022] [Indexed: 10/03/2024]
Abstract
Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [11C]methionine and [11C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [68Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.
Collapse
Affiliation(s)
- Johannes von Hinten
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Malte Kircher
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Alexander Dierks
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Christian H. Pfob
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Samuel Samnick
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
10
|
Sachpekidis C, Goldschmidt H, Dimitrakopoulou-Strauss A. [Positron emission tomography/computed tomography (PET/CT) in multiple myeloma]. Radiologe 2021; 62:20-29. [PMID: 34921323 DOI: 10.1007/s00117-021-00948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Imaging plays a pivotal role in the management of multiple myeloma (MM). Besides morphological imaging methods, such as whole-body X‑ray, computed tomography (CT) and magnetic resonance imaging (MRI), the hybrid modality positron emission tomography/CT (PET/CT) using the glucose analogue 18F‑fluorodeoxyglucose (18F‑FDG) as radiotracer is increasingly used. OBJECTIVES Aim of this review article is to outline the major applications of PET/CT in the diagnosis and management of MM, and to provide hints on the reading and interpretation. MATERIALS AND METHODS Background knowledge and guideline recommendations on imaging of MM are outlined and complemented by recent study results. RESULTS Although 18F‑FDG PET/CT is not currently considered a standard method for the diagnosis of MM, it is a very powerful diagnostic tool for the detection of medullary and extramedullary disease, a reliable predictor of survival and the most robust modality for treatment response evaluation. Moreover, it plays a significant role in minimal residual disease (MRD) assessment. On the other hand, practical considerations on local availability and costs limit the widespread use of PET/CT. In addition, false-negative and the seldom false-positive results and the heterogeneity of MM presentation inevitably make interpretation of PET/CT images challenging. CONCLUSIONS PET/CT has a high value in the diagnosis, prognosis, and assessment of treatment response in patients with MM. Therefore, the role of the modality in the management of the disease is expected to increase in the near future.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Klinische Kooperationseinheit Nuklearmedizin, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Deutschland.
| | - Hartmut Goldschmidt
- Sektion Multiples Myelom, Klinik für Hämatologie, Onkologie, Rheumatologie Heidelberg, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.,Nationales Centrum für Tumorerkrankungen (NCT), Heidelberg, Deutschland
| | - Antonia Dimitrakopoulou-Strauss
- Klinische Kooperationseinheit Nuklearmedizin, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Deutschland
| |
Collapse
|
11
|
Sachpekidis C, Merz M, Raab MS, Bertsch U, Weru V, Kopp-Schneider A, Jauch A, Goldschmidt H, Dimitrakopoulou-Strauss A. The prognostic significance of [ 18F]FDG PET/CT in multiple myeloma according to novel interpretation criteria (IMPeTUs). EJNMMI Res 2021; 11:100. [PMID: 34628525 PMCID: PMC8502185 DOI: 10.1186/s13550-021-00846-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE [18F]FDG PET/CT is the elective imaging modality for treatment monitoring in multiple myeloma (MM). However, MM is a heterogeneous disease from an imaging point of view, raising challenges in interpretation of PET/CT. We herein investigated the prognostic role of the novel Italian Myeloma criteria for PET Use (IMPeTUs) in MM patients undergoing high-dose chemotherapy (HDT) followed by autologous stem cell transplantation (ASCT). METHODS Forty-seven patients with newly diagnosed MM underwent [18F]FDG PET/CT before commencement of treatment (baseline PET/CT). Thirty-four of them (72.3%) were also examined after completion of ASCT (follow-up PET/CT). PET/CT analysis was based on the IMPeTUs criteria, which take into consideration-among others-the metabolic state of the bone marrow based on the 5-point Deauville score (DS), the number and metabolic state of focal [18F]FDG-avid lesions, as well as the presence of paramedullary disease (PMD) and extramedullary disease (EMD). We analyzed whether parameters from IMPeTUs correlate with clinically relevant parameters and patients' outcome, as assessed by progression-free survival (PFS). RESULTS Median follow-up from baseline and follow-up PET/CT were 85.1 months and 76.7 months, respectively. The number of focal, [18F]FDG-avid lesions significantly correlated with the bone marrow infiltration rate and the R-ISS stage, while the presence of PMD was associated with LDH. After univariate survival analysis, the number of focal, [18F]FDG-avid lesions both before and after therapy as well as the presence of PMD and EMD before therapy adversely affected PFS. Multivariate survival analysis for baseline parameters confirmed that the number of focal, [18F]FDG-avid lesions and the presence of EMD are associated with adverse prognosis, irrespective of the ISS stage and/or the presence of high-risk cytogenetic abnormalities. The 5-point DS of [18F]FDG uptake in reference bone marrow and focal lesions showed a significant decrease as response to treatment, but it did not affect PFS. CONCLUSION Several parameters utilized in IMPeTUs predict PFS in MM patients, suggesting the potentially significant role of the new criteria in patient stratification and response assessment. Additional studies are warranted for the further evaluation of IMPeTUs in the direction of establishment of robust cut-off values with a prognostic significance in the disease.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | - Maximilian Merz
- Department of Hematology and Cell Therapy, University of Leipzig, Leipzig, Germany.,Department of Internal Medicine V, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marc-Steffen Raab
- Department of Internal Medicine V, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uta Bertsch
- Department of Internal Medicine V, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Vivienn Weru
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| |
Collapse
|
12
|
Ngai C, Kumar S, Chi-Lai Ho G, Chen S, Chim CS. Case series: MRD negativity assessment using 11C-Acetate PET with 3-weekly daratumumab-based quadruplet induction in newly diagnosed multiple myeloma. Ther Adv Hematol 2021; 12:20406207211030369. [PMID: 34616538 PMCID: PMC8488511 DOI: 10.1177/20406207211030369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Complete response (CR) is an important favorable factor for survival in multiple myeloma (MM). However, CR patients continue to relapse, especially in the presence of minimal residual disease (MRD). Bone marrow (BM) MRD is predictive of progression-free survival (PFS) in MM. However, myeloma outside the BM aspiration site may result in subsequent relapse despite MRD-negativity. Therefore, positron emission tomography-computed tomography (PET-CT) based on F-fluorodeoxyglucose (FDG) is a complementary tool to monitor residual disease in MM. However, FDG may miss myeloma lesions that are not FDG-avid. On the other hand, 11C-Acetate (ACT) has been found to be a more sensitive and specific tracer than FDG in MM. Recently, the addition of daratumumab to bortezomib, thalidomide, dexamethasone (VTd) or bortezomib, lenalidomide, dexamethasone (VRd) backbone has been proven to improve outcomes. Herein, we report three newly-diagnosed MM patients achieving deep responses with imaging CR using ACT PET in addition to conventional immunofixation CR and MRD-negative CR after a 3-weekly daratumumab-based quadruplet induction regimen.
Collapse
Affiliation(s)
- Cheong Ngai
- Division of Haematology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Garrett Chi-Lai Ho
- Department of Nuclear Medicine and PET, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Sirong Chen
- Department of Nuclear Medicine and PET, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Chor-Sang Chim
- Division of Haematology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong
| |
Collapse
|
13
|
Ghai A, Fettig N, Fontana F, DiPersio J, Rettig M, Neal JO, Achilefu S, Shoghi KI, Shokeen M. In vivo quantitative assessment of therapeutic response to bortezomib therapy in disseminated animal models of multiple myeloma with [ 18F]FDG and [ 64Cu]Cu-LLP2A PET. EJNMMI Res 2021; 11:97. [PMID: 34586539 PMCID: PMC8481408 DOI: 10.1186/s13550-021-00840-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Multiple myeloma (MM) is a disease of cancerous plasma cells in the bone marrow. Imaging-based timely determination of therapeutic response is critical for improving outcomes in MM patients. Very late antigen-4 (VLA4, CD49d/CD29) is overexpressed in MM cells. Here, we evaluated [18F]FDG and VLA4 targeted [64Cu]Cu-LLP2A for quantitative PET imaging in disseminated MM models of variable VLA4 expression, following bortezomib therapy. Methods In vitro and ex vivo VLA4 expression was evaluated by flow cytometry. Human MM cells, MM.1S-CG and U266-CG (C: luciferase and G: green fluorescent protein), were injected intravenously in NOD-SCID gamma mice. Tumor progression was monitored by bioluminescence imaging (BLI). Treatment group received bortezomib (1 mg/kg, twice/week) intraperitoneally. All cohorts (treated, untreated and no tumor) were longitudinally imaged with [18F]FDG (7.4–8.0 MBq) and [64Cu]Cu-LLP2A (2–3 MBq; Molar Activity: 44.14 ± 1.40 MBq/nmol) PET, respectively. Results Flow cytometry confirmed high expression of CD49d in U266 cells (> 99%) and moderate expression in MM.1S cells (~ 52%). BLI showed decrease in total body flux in treated mice. In MM.1S-CG untreated versus treated mice, [64Cu]Cu-LLP2A localized with a significantly higher SUVmean in spine (0.58 versus 0.31, p < 0.01) and femur (0.72 versus 0.39, p < 0.05) at week 4 post-tumor inoculation. There was a four-fold higher uptake of [64Cu]Cu-LLP2A (SUVmean) in untreated U266-CG mice compared to treated mice at 3 weeks post-treatment. Compared to [64Cu]Cu-LLP2A, [18F]FDG PET detected treatment-related changes at later time points. Conclusion [64Cu]Cu-LLP2A is a promising tracer for timely in vivo assessment of therapeutic response in disseminated models of MM. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00840-4.
Collapse
Affiliation(s)
- Anchal Ghai
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA
| | - Nikki Fettig
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA
| | - Francesca Fontana
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mike Rettig
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie O Neal
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Achilefu
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Kooresh I Shoghi
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA
| | - Monica Shokeen
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, 2nd floor, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
14
|
Quantitative, Dynamic 18F-FDG PET/CT in Monitoring of Smoldering Myeloma: A Case Report. Diagnostics (Basel) 2021; 11:diagnostics11040649. [PMID: 33916783 PMCID: PMC8066752 DOI: 10.3390/diagnostics11040649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
We report on a 52-year-old patient with an initial diagnosis of smoldering myeloma (SMM), who was monitored by means of dynamic and static positron emission tomography/computed tomography (PET/CT) with the radiotracer 1⁸F-fluorodeoxyglucose (18F-FDG). Baseline PET/CT revealed no pathological signs. Six months later, a transition to symptomatic, multiple myeloma (MM) was diagnosed. The transition was not accompanied by focal, hypermetabolic lesions on PET/CT. However, a diffusely increased 18F-FDG uptake in the bone marrow, accompanied by a marked increase of semi-quantitative (standardized uptake value, SUV) and quantitative, pharmacokinetic 18F-FDG parameters, was demonstrated. After successful treatment, including tandem autologous transplantation, the diffuse uptake in the bone marrow as well as the semi-quantitative and quantitative parameters showed a marked remission. This response was also confirmed by the clinical follow-up of the patient. These findings suggest that in MM a diffuse 18F-FDG uptake in the bone marrow may indeed reflect an actual bone marrow infiltration by plasma cells. Moreover, SUV values and kinetic parameters, not only from myeloma lesions but also from random bone marrow samples, may be used for MM monitoring. This could be particularly helpful in the follow-up of myeloma patients negative for 18F-FDG-avid focal lesions.
Collapse
|
15
|
Can 18F-NaF PET/CT before Autologous Stem Cell Transplantation Predict Survival in Multiple Myeloma? Cancers (Basel) 2020; 12:cancers12051335. [PMID: 32456181 PMCID: PMC7281312 DOI: 10.3390/cancers12051335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
There is an unmet need for positron emission tomography (PET) radiotracers that can image bone disease in multiple myeloma (MM) in a more sensitive and specific way than the widely used 18F-fluorodeoxyglucose (18F-FDG). Sodium fluoride (18F-NaF) is a highly sensitive tracer of bone reconstruction, evolving as an important imaging agent for the assessment of malignant bone diseases. We attempted to investigate for the first time the prognostic significance of 18F-NaF PET/CT in newly diagnosed, symptomatic MM patients planned for autologous stem cell transplantation (ASCT). Forty-seven patients underwent dynamic and static PET/CT with 18F-NaF before treatment. After correlation with the respective findings on CT and 18F-FDG PET/CT that served as reference, the 18F-NaF PET findings were compared with established factors of high-risk disease, like cytogenetic abnormalities as well as bone marrow plasma cell infiltration rate. Furthermore, the impact of 18F-NaF PET/CT on progression-free survival (PFS) was analyzed. Correlation analysis revealed a moderate, significant correlation of the 18F-NaF parameters SUVaverage and K1 in reference tissue with bone marrow plasma cell infiltration rate. However, no significant correlation was observed regarding all other 18F-NaF PET parameters. Survival analysis revealed that patients with a pathologic 18F-NaF PET/CT have a shorter PFS (median = 36.2 months) than those with a physiologic scan (median = 55.6 months) (p = 0.02). Nevertheless, no quantitative 18F-NaF parameter could be shown to adversely affect PFS. In contrast, the respective analysis for quantitative dynamic 18F-FDG PET/CT revealed that the parameters SUVmax, fractional blood volume (VB), k3 and influx from reference tissue as well as SUVaverage from MM lesions had a significant negative impact on patient survival. The herein presented findings highlight the rather limited role of 18F-NaF PET/CT as a single PET approach in MM.
Collapse
|