1
|
Maus H, Müller P, Meta M, Hoba SN, Hammerschmidt SJ, Zimmermann RA, Zimmer C, Fuchs N, Schirmeister T, Barthels F. Next Generation of Fluorometric Protease Assays: 7-Nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-Amides) as Class-Spanning Protease Substrates. Chemistry 2023; 29:e202301855. [PMID: 37313627 DOI: 10.1002/chem.202301855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
Fluorometric assays are one of the most frequently used methods in medicinal chemistry. Over the last 50 years, the reporter molecules for the detection of protease activity have evolved from first-generation colorimetric p-nitroanilides, through FRET substrates, and 7-amino-4-methyl coumarin (AMC)-based substrates. The aim of further substrate development is to increase sensitivity and reduce vulnerability to assay interferences. Herein, we describe a new generation of substrates for protease assays based on 7-nitrobenz-2-oxa-1,3-diazol-4-yl-amides (NBD-amides). In this study, we synthesized and tested substrates for 10 different proteases from the serine-, cysteine-, and metalloprotease classes. Enzyme- and substrate-specific parameters as well as the inhibitory activity of literature-known inhibitors confirmed their suitability for application in fluorometric assays. Hence, we were able to present NBD-based alternatives for common protease substrates. In conclusion, these NBD substrates are not only less susceptible to common assay interference, but they are also able to replace FRET-based substrates with the requirement of a prime site amino acid residue.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Patrick Müller
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Mergim Meta
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Sabrina N Hoba
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Robert A Zimmermann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Collin Zimmer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Natalie Fuchs
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
2
|
Alves ETM, Pernichelle FG, Nascimento LA, Ferreira GM, Ferreira EI. Covalent Inhibitors for Neglected Diseases: An Exploration of Novel Therapeutic Options. Pharmaceuticals (Basel) 2023; 16:1028. [PMID: 37513939 PMCID: PMC10385647 DOI: 10.3390/ph16071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Neglected diseases, primarily found in tropical regions of the world, present a significant challenge for impoverished populations. Currently, there are 20 diseases considered neglected, which greatly impact the health of affected populations and result in difficult-to-control social and economic consequences. Unfortunately, for the majority of these diseases, there are few or no drugs available for patient treatment, and the few drugs that do exist often lack adequate safety and efficacy. As a result, there is a pressing need to discover and design new drugs to address these neglected diseases. This requires the identification of different targets and interactions to be studied. In recent years, there has been a growing focus on studying enzyme covalent inhibitors as a potential treatment for neglected diseases. In this review, we will explore examples of how these inhibitors have been used to target Human African Trypanosomiasis, Chagas disease, and Malaria, highlighting some of the most promising results so far. Ultimately, this review aims to inspire medicinal chemists to pursue the development of new drug candidates for these neglected diseases, and to encourage greater investment in research in this area.
Collapse
Affiliation(s)
- Erick Tavares Marcelino Alves
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Filipe Gomes Pernichelle
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Lucas Adriano Nascimento
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| | - Elizabeth Igne Ferreira
- Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Butantã, São Paulo 05508-000, Brazil
| |
Collapse
|
3
|
Ma Y, Zhang M, Deng Z, Wang X, Huang H, Yang K, Yuan B, Liu Y, Kang Z. Chiral carbon dots - a functional domain for tyrosinase Cu active site modulation via remote target interaction. NANOSCALE 2022; 14:1202-1210. [PMID: 34989754 DOI: 10.1039/d1nr07236f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nano-hybrid enzyme is an ideal catalytic system that integrates various advantages from biocatalysis and nanocatalysis into homogeneous and heterogeneous catalysis. However, great efforts are still needed to fully understand the interactions between nanoparticles and enzymes. Here, we show chiral carbon dots (CDs) as a new functional domain for tyrosinase Cu active site modulation via remote target interaction. Three kinds of chiral CDs (LCDs-1/-2/-3; DCDs-1/-2/-3) were fabricated by thermal treatment of citric acid and L/D-aspartic acid. Then a series of CDs/tyrosinase composites (namely, nano-hybrid-enzymes) were prepared, demonstrating good regulation of enzyme catalytic kinetics. Especially, we find that LCDs-1 is an irreversible inhibitor with great inhibition effect while the others are all reversible inhibitors. Furthermore, it is suggested by both experiments and all-atom molecular dynamics simulations that the joint effect of LCDs-1 and tyrosinase makes LCDs-1 serve as a new functional domain, which has a distinguished ability to control the conformational changes of the key sites of the active center of the tyrosinase (e.g., H60) and thus the escaping behavior of copper ions and the catalytic activity. This work opens a new route for nano-hybrid-enzyme design and enzyme activity regulation with chiral carbon materials as functional domains via remote target interaction.
Collapse
Affiliation(s)
- Yurong Ma
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Zhixiong Deng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Xiting Wang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research and School of Physical Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China.
| |
Collapse
|
4
|
Arafet K, González FV, Moliner V. Elucidating the Dual Mode of Action of Dipeptidyl Enoates in the Inhibition of Rhodesain Cysteine Proteases. Chemistry 2021; 27:10142-10150. [PMID: 33852187 DOI: 10.1002/chem.202100892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/06/2023]
Abstract
A computational study of the two possible inhibition mechanisms of rhodesain cysteine protease by the dipeptidyl enoate Cbz-Phe-Leu-CH=CH-CO2 C2 H5 has been carried out by means of molecular dynamics simulations with hybrid QM/MM potentials. The low free energy barriers confirm that the Cys25 residue can attack both Cβ and C1 atoms of the inhibitor, confirming a dual mode of action in the inhibition of the rhodesain by enoates. According to the results, the inhibition process through the Cys25 attack on the Cβ atom of the inhibitor is an exergonic and irreversible process, while the inhibition process when Cys25 attacks on the C1 atom of the inhibitor is and exergonic but reversible process. The interactions between the inhibitor and rhodesain suggest that P2 is the most important fragment to consider in the design of new efficient inhibitors of rhodesain. These results may be useful for the design of new inhibitors of rhodesain and other related cysteine proteases based on dipeptidyl enoates scaffolds.
Collapse
Affiliation(s)
- Kemel Arafet
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castelló, Spain
| | - Florenci V González
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071, Castelló, Spain
| | - Vicent Moliner
- Institute of Advanced Materials (INAM), Universitat Jaume I, 12071, Castelló, Spain
| |
Collapse
|