1
|
Linares-Castañeda A, Jiménez-Martínez C, Sánchez-Chino XM, Pérez-Pérez V, Cid-Gallegos MS, Corzo-Ríos LJ. Modifying of non-nutritional compounds in legumes: Processing strategies and new technologies. Food Chem 2025; 463:141603. [PMID: 39405829 DOI: 10.1016/j.foodchem.2024.141603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 11/14/2024]
Abstract
Legumes are consumed worldwide, are notable for their nutritional quality, however, contain certain non-nutritional compounds (NNCs) that can affect the absorption of nutrients, though these may exhibit bioactive properties. Various processing methods can modify the concentration of NNCs, including soaking and germination. These methods can be combined with other thermal, non-thermal, and bioprocessing treatments to enhance their efficiency. The efficacy of these methods is contingent upon the specific types of NNCs and legume in question. This work examines the effectiveness of these processing methods in terms of modifying the concentration of NNCs present in legumes as well as the potential use of emerging technologies, to enhance the level of NNCs modification in legumes. These technologies could increase the functional use of legume flours, potentially leading to new opportunities for incorporating legume-based ingredients in a range of culinary applications, thereby enhancing the diets of many individuals worldwide.
Collapse
Affiliation(s)
- Alejandra Linares-Castañeda
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738 Mexico City, Mexico
| | - Xariss M Sánchez-Chino
- Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carr. Villahermsa-Reforma Km 15.5 S/N. Rancheria Guineo 2ª sección CP. 86280 Villahermosa,Tabasco, Mexico
| | - Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - María Stephanie Cid-Gallegos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, 07340 México City, Mexico.
| |
Collapse
|
2
|
Zhang Z, Liu C, Wu S, Ma T. The Non-Nutritional Factor Types, Mechanisms of Action and Passivation Methods in Food Processing of Kidney Bean ( Phaseolus vulgaris L.): A Systematic Review. Foods 2023; 12:3697. [PMID: 37835350 PMCID: PMC10572541 DOI: 10.3390/foods12193697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Kidney beans (KBs), as a traditional edible legume, are an important food crop of high nutritional and economic value worldwide. KBs contain a full range of amino acids and a high proportion of essential amino acids, and are rich in carbohydrates as well as vitamins and minerals. However, KBs contain a variety of non-nutritional factors that impede the digestion and absorption of nutrients, disrupt normal metabolism and produce allergic reactions, which severely limit the exploitation of KBs and related products. Suppressing or removing the activity of non-nutritional factors through different processing methods can effectively improve the application value of KBs and expand the market prospect of their products. The aim of this review was to systematically summarize the main types of non-nutritional factors in KBs and their mechanisms of action, and to elucidate the effects of different food processing techniques on non-nutritional factors. The databases utilized for the research included Web of Science, PubMed, ScienceDirect and Scopus. We considered all original indexed studies written in English and published between 2012 and 2023. We also look forward to the future research direction of producing KB products with low non-nutritional factors, which will provide theoretical basis and foundation for the development of safer and healthier KB products.
Collapse
Affiliation(s)
- Zifan Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Chunxiu Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Sisi Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Tiezheng Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Tienda-Vazquez MA, Soto-Castro RD, Carrasco-Morales O, Téllez-Pérez C, Parra-Saldívar R, Alonzo-Macías M, Cardador-Martínez A. Effect of Instant Controlled Pressure Drop (DIC) on Polyphenols, Flavonoids and Antioxidant Capacity of Green Lentils ( Lens culinaris). Molecules 2023; 28:molecules28104119. [PMID: 37241860 DOI: 10.3390/molecules28104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Instant controlled pressure drop (DIC) is one of the emerging technologies in food processing; it can be used for drying, freezing and the extraction of bioactive molecules without damaging their properties. Legumes, such as lentils, are one of the most consumed foods in the world; however, they are mainly cooked by boiling, which causes the loss of antioxidant compounds. This work evaluated the effect of 13 different DIC treatments (with pressure ranges of 0.1-0.7 MPa and times of 30-240 s) on the content of polyphenols (Folin-Ciocalteu and High Performance Liquid Chromatography HPLC) and flavonoids (2-aminoethyl diphenylborinate) as well as the antioxidant activity (DPPH and TEAC) of green lentils. The DIC 11 treatment (0.1 MPa, 135 s) obtained the best release of polyphenols, which in turn are related to antioxidant capacity. The abiotic stress generated by DIC could lead to the breakdown of the cell wall structure, which favors the availability of antioxidant compounds. Finally, the most efficient conditions for DIC to promote the release of phenolic compounds and maintain antioxidant capacity were found under low pressures (<0.1 MPa) and short times (<160 s).
Collapse
Affiliation(s)
- Mario Adrian Tienda-Vazquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
- Tecnologico de Monterrey, Centro de Biotecnologia FEMSA, School of Engineering and Sciences, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Rocío Daniela Soto-Castro
- Tecnologico de Monterrey, Centro de Biotecnologia FEMSA, School of Engineering and Sciences, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Oscar Carrasco-Morales
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| | - Carmen Téllez-Pérez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
- Laboratory of Engineering Science for Environment LaSIE-UMR-CNRS 7356, Eco-Intensification of Agro-Industrial Eco-Processes, La Rochelle University, 17042 La Rochelle, France
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Centro de Biotecnologia FEMSA, School of Engineering and Sciences, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, Mexico
| | - Maritza Alonzo-Macías
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| | - Anaberta Cardador-Martínez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| |
Collapse
|
4
|
Ramírez-Parra E, De la Rosa L. Designing Novel Strategies for Improving Old Legumes: An Overview from Common Vetch. PLANTS (BASEL, SWITZERLAND) 2023; 12:1275. [PMID: 36986962 PMCID: PMC10058852 DOI: 10.3390/plants12061275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Common vetch (Vicia sativa L.) is a grain legume used in animal feeding, rich in protein content, fatty acid, and mineral composition that makes for a very adequate component to enrich feedstuff. In addition, relevant pharmacological properties have been reported in humans. The common vetch, similar to other legumes, can fix atmospheric nitrogen, a crucial feature for sustainable agricultural systems. These properties enhance the use of vetch as a cover crop and its sowing in intercropping systems. Moreover, several studies have recently pointed out the potential of vetch in the phytoremediation of contaminated soils. These characteristics make vetch a relevant crop, which different potential improvements target. Varieties with different yields, flowering times, shattering resistance, nutritional composition, rhizobacteria associations, drought tolerance, nitrogen fixation capacity, and other agronomic-relevant traits have been identified when different vetch accessions are compared. Recently, the analysis of genomic and transcriptomic data has allowed the development of different molecular markers to be used for assisted breeding purposes, promoting crop improvement. Here, we review the potential of using the variability of V. sativa genetic resources and new biotechnological and molecular tools for selecting varieties with improved traits to be used in sustainable agriculture systems.
Collapse
Affiliation(s)
- Elena Ramírez-Parra
- Centro de Biotecnología y Genómica de Plantas, (CBGP, UPM-INIA/CSIC) Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Lucía De la Rosa
- Centro de Recursos Fitogenéticos, (CRF-INIA/CSIC) Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Alcalá de Henares, 28805 Madrid, Spain
| |
Collapse
|
5
|
Chaudhary N, Dangi P, Chaudhary V, Dewan A, Sharma SP, Poonia A, Kumar M. A review on instant controlled pressure drop technology – a strategic tool for extraction of bioactive compounds. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Chaudhary
- Department of Food Science and Technology College of Agriculture, Nagaur Agriculture University Jodhpur Rajasthan 341001 India
| | - Priya Dangi
- Department of Food and Nutrition and Food Technology University of Delhi Institute of Home Economics F‐4, Hauz Khas Enclave New Delhi 110016 India
| | - Vandana Chaudhary
- Department of Dairy Technology Lala Lajpat Rai University of Veterinary and Animal Sciences Hisar Haryana 125001 India
| | - Aastha Dewan
- Department of Food Technology Guru Jambheshwar University of Science and Technology Hisar Haryana 125001 India
| | - Sujata Pandit Sharma
- Department of Life Sciences Sharda University Uttar Pradesh Plot No 32‐34, Knowledge Park III Greater Noida Uttar Pradesh 201310 India
| | - Amrita Poonia
- Department of Dairy Science and Food Technology Banaras Hindu University Uttar Pradesh Varanasi Uttar Pradesh 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Adenwala Road, Matunga (East) Mumbai Maharashtra 400019 India
| |
Collapse
|
6
|
Acquah C, Ohemeng-Boahen G, Power KA, Tosh SM. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681662] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diversification of plant-based food sources is necessary to improve global food and nutritional security. Pulses have enormous nutritional and health benefits in preventing malnutrition and chronic diseases while contributing positively to reducing environmental footprint. Pulses are rich in diverse nutritional and non-nutritional constituents which can be classified as bioactive compounds due to their biological effect. These bioactive compounds include but are not limited to proteins, dietary fibres, resistant starch, polyphenols, saponins, lectins, phytic acids, and enzyme inhibitors. While these compounds are of importance in ensuring food and nutritional security, some of the bioactive constituents have ambivalent properties. These properties include having antioxidant, anti-hypertensive and prebiotic effects. Others have a deleterious effect of decreasing the digestibility and/or bioavailability of essential nutrients and are therefore termed antinutritional factors/compounds. Various processing techniques exist to reduce the content of antinutritional factors found in pulses. Traditional processing of pulses comprises soaking, dehulling, milling, germination, fermentation, and boiling, while examples of emerging processing techniques include microwaving, extrusion, and micronization. These processing techniques can be tailored to purpose and pulse type to achieve desired results. Herein, the nutritional qualities and properties of bioactive compounds found in pulses in meeting the sustainable development goals are presented. It also discusses the effect of processing techniques on the nutritional and non-nutritional constituents in pulses as well as the health and environmental benefits of pulse-diet consumption. Major challenges linked to pulses that could limit their potential of being ideal crops in meeting the sustainable development goal 2 agenda are highlighted.
Collapse
|
7
|
Acevedo Martinez KA, Yang MM, Gonzalez de Mejia E. Technological properties of chickpea (Cicer arietinum): Production of snacks and health benefits related to type-2 diabetes. Compr Rev Food Sci Food Saf 2021; 20:3762-3787. [PMID: 33998131 DOI: 10.1111/1541-4337.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 01/22/2023]
Abstract
Chickpea (Cicer arietinum) is one of the most consumed pulses worldwide (over 2.3 million tons enter the world market annually). Some chickpea components have shown, in preclinical and clinical studies, several health benefits, including antioxidant capacity, and antifungal, antibacterial, analgesic, anticancer, antiinflammatory, and hypocholesterolemic properties, as well as angiotensin I-converting enzyme inhibition. In the United States, chickpea is consumed mostly in the form of hummus. However, the development of new products with value-added bioactivity is creating new opportunities for research and food applications. Information about bioactive compounds and functional properties of chickpea ingredients in the development of new products is needed. The objective of this review was to summarize available scientific information, from the last 15 years, on chickpea production, consumption trends, applications in the food industry in the elaboration of plant-based snacks, and on its bioactive compounds related to type 2 diabetes (T2D). Areas of opportunity for future research and new applications of specific bioactive compounds as novel food ingredients are highlighted. Research is key to overcome the main processing obstacles and sensory challenges for the application of chickpea as ingredient in snack preparations. The use of chickpea bioactive compounds as ingredient in food products is also a promising area for accessibility of their health benefits, such as the management of T2D.
Collapse
Affiliation(s)
- Karla A Acevedo Martinez
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Mary M Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods 2021; 10:foods10020304. [PMID: 33540842 PMCID: PMC7912961 DOI: 10.3390/foods10020304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022] Open
Abstract
This study was conducted to produce malt from legume seeds (chickpea, lentil, pea, and vetch) and test whether malting with parameters, typically barley grain, will result in well-modified legume seed malt. Analysis of malt was performed by producing congress worts from legume seed malts. Concentration of phenolic compounds, as well as antioxidant activity of legume seed malts was analysed. Acquired worts were characterised with poor technological characteristics (wort extract, wort volume, saccharification time, brewhouse efficiency); however, the malting process increased concentration of phenolic compounds and antioxidant activity of the plant material. Subsequent mashing tests with addition of different external enzymes and/or gelatinisation of legume seed malt were performed. Use of external enzymes improved saccharification time, extract content, wort volume, as well brewhouse efficiency in the case of some legume seed malts. The best brewhouse efficiencies and highest extract values were acquired by the samples prepared with 30% of gelatinised vetch malt or chickpea malt mixed with 70% of Pilsner malt. The study shows that there is possibility of creating legume seed malts, but malting and mashing characteristics need to be customised for these special malts.
Collapse
|
9
|
Cardador-Martínez A, Martínez-Tequitlalpan Y, Gallardo-Velazquez T, Sánchez-Chino XM, Martínez-Herrera J, Corzo-Ríos LJ, Jiménez-Martínez C. Effect of Instant Controlled Pressure-Drop on the Non-Nutritional Compounds of Seeds and Sprouts of Common Black Bean ( Phaseolus vulgaris L.). Molecules 2020; 25:E1464. [PMID: 32213962 PMCID: PMC7146566 DOI: 10.3390/molecules25061464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/16/2022] Open
Abstract
The common bean is an important caloric-protein food source. However, its nutritional value may be affected by the presence of non-nutritional compounds, which decrease the assimilation of some nutrients; however, at low concentrations, they show a beneficial effect. Germination and treatment by controlled pressure-drop (DIC, French acronym of Détente Instantanée Contrôlée) are methods that modify the concentration of these components. The objective of this work was to evaluate the change in the non-nutritional composition of bean seeds and sprouts by DIC treatment. The results show that with the germination, the concentration of phenolic and tannin compounds increased 99% and 73%, respectively, as well as the quantity of saponins (65.7%), while phytates and trypsin inhibitors decreased 26% and 42%, respectively. When applying the DIC treatment, the content of phytates (23-29%), saponins (44%) and oligosaccharides increased in bean sprouts and decreased phenolic compounds (4-14%), tannins (23% to 72%), and trypsin inhibitors (95.5%), according to the pressure and time conditions applied. This technology opens the way to new perspectives, especially to more effective use of legumes as a source of vegetable protein or bioactive compounds.
Collapse
Affiliation(s)
- Anaberta Cardador-Martínez
- Departamento de Bioingenierías, Tecnologico de Monterrey, Av. Epigmenio González No. 500, Fraccionamiento San Pablo, Querétaro 76130, Mexico
| | - Yara Martínez-Tequitlalpan
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México City, CdMx 07738, Mexico; (Y.M.-T.); (T.G.-V.)
| | - Tzayhri Gallardo-Velazquez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México City, CdMx 07738, Mexico; (Y.M.-T.); (T.G.-V.)
| | - Xariss M. Sánchez-Chino
- Cátedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Carretera a Reforma Km. 15.5 s/n. Ra. Guineo 2da. Sección, Villahermosa, Tabasco 86280, Mexico;
| | - Jorge Martínez-Herrera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tabasco, Campo Experimental Huimanguillo, Km. 1. Carr. Huimanguillo-Cárdenas, Tabasco 86400, Mexico;
| | - Luis Jorge Corzo-Ríos
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto S/N, Barrio La Laguna, Col. La Laguna Ticomán, México City 07340, Mexico;
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, Delegación Gustavo A. Madero, México City, CdMx 07738, Mexico; (Y.M.-T.); (T.G.-V.)
| |
Collapse
|