1
|
Wang L, Yang K, Yu P, Liu H, Cheng Q, Yu A, Liu X, Yang Z. Characterization of WO 3/Silicone Rubber Composites for Hydrogen-Sensitive Gasochromic Application. Molecules 2024; 29:3499. [PMID: 39124906 PMCID: PMC11314044 DOI: 10.3390/molecules29153499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
WO3 and silicone rubber (SR)-based gasochromic composites were fabricated to detect hydrogen leaks at room temperature. WO3 rod-like nanostructures were uniformly distributed in the SR matrix, with a particle size of 60-100 nm. The hydrogen permeability of these composites reached 1.77 cm3·cm/cm2·s·cmHg. At a 10% hydrogen concentration, the visible light reflectance of the composite decreased 49% during about 40 s, with a color change rate of 6.4% s-1. Moreover, the composite detected hydrogen concentrations as low as 0.1%. And a color scale was obtained for easily assessing hydrogen concentrations in the environment based on the color of composites. Finally, the composite materials as disposable sensors underwent testing at several Sinopec hydrogen refueling stations.
Collapse
Affiliation(s)
- Lin Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China;
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| | - Ke Yang
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| | - Ping Yu
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| | - Huan Liu
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| | - Qingli Cheng
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| | - Anfeng Yu
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| | - Xinmei Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China;
| | - Zhe Yang
- State Key Laboratory of Chemical Safety, Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China; (K.Y.); (P.Y.); (H.L.); (Q.C.); (A.Y.)
| |
Collapse
|
2
|
Rubini K, Menichetti A, Cassani MC, Montalti M, Bigi A, Boanini E. The Role of WO 3 Nanoparticles on the Properties of Gelatin Films. Gels 2024; 10:354. [PMID: 38920900 PMCID: PMC11203329 DOI: 10.3390/gels10060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles.
Collapse
Affiliation(s)
- Katia Rubini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Arianna Menichetti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
3
|
Chen T, Xu B, Han J, Zhu M, Zhang J, Li Z. Chelating Coordination Regulated Photochromic Electrospun Nanofibers for Waterproof and Long-Color-Retention Rewritable Wearables. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38421948 DOI: 10.1021/acsami.3c19129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Photochromic materials with rapid color-switching, long color retention times, and rewritability are crucial for meeting the requirements of future rewritable ink-free media. However, these requirements are challenging to satisfy simultaneously due to the inherent constraints among these features. Herein, a novel photochromic nanofiber nonwoven fabric was designed and constructed based on a conjugated organic-inorganic hybrid structure through electrospinning and hot-pressing techniques. The as-prepared fabric can change color in merely 5 s under UV irradiation and can reach saturation within 2 min. In addition, upon the introduction of a potent metal chelator, its color retention time exceeds 14 days under ambient conditions, significantly longer than that of most rewritable materials recently reported (several hours to 5 days). Moreover, the fabric exhibits high writing resolution and can be photoprinted and heat-erased for over 100 cycles while still retaining 96% of its initial reflectivity. Hydrophobic thermoplastic polyurethane provides the fabric with excellent waterproof and antifouling properties, thus preventing the composite from swelling or collecting graffiti due to moisture or dust. This work exploits a competitive approach for designing flexible, rewritable, and superior functional wearables with practical applications.
Collapse
Affiliation(s)
- Tiandi Chen
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jing Han
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Meng Zhu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Junze Zhang
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Zihua Li
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| |
Collapse
|
4
|
Lebastard C, Wilmet M, Cordier S, Comby-Zerbino C, MacAleese L, Dugourd P, Ohashi N, Uchikoshi T, Grasset F. High performance {Nb 5TaX 12}@PVP (X = Cl, Br) cluster-based nanocomposites coatings for solar glazing applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:446-456. [PMID: 36081837 PMCID: PMC9448435 DOI: 10.1080/14686996.2022.2105659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 05/29/2023]
Abstract
The development of highly ultraviolet (UV) and near-infrared (NIR) absorbent transparent coatings is an important enabling technology and area of research for environmental sustainability and energy conservation. Different amounts of K4[{Nb5TaXi 12}Xa 6] cluster compounds (X = Cl, Br) dispersed into polyvinylpyrrolidone matrices were prepared by a simple, nontoxic and low-cost wet chemical method. The resulting solutions were used to fabricate visibly transparent, highly UV and NIR absorbent coatings by drop casting. The properties of the solution and films were investigated by complementary techniques (optical absorption, electrospray ionization mass spectrometry and Raman spectroscopy). The UV and NIR absorption of such samples strongly depended on the concentration, dispersion and oxidation state of the [{Nb5TaXi 12}Xa 6] nanocluster-based units. By varying and controlling these parameters, a remarkable improvement of the figures of merit TL/TE and SNIR for solar-glazing applications was achieved compared to the previous results on nanocomposite coatings based on metal atom clusters.
Collapse
Affiliation(s)
- Clément Lebastard
- Université Rennes, CNRS, ISCR, UMR6226, F-35000Rennes, France
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Maxence Wilmet
- Université Rennes, CNRS, ISCR, UMR6226, F-35000Rennes, France
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Saint Gobain Research Paris, Aubervilliers, France
| | | | - Clothilde Comby-Zerbino
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622Lyon, France
| | - Luke MacAleese
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622Lyon, France
| | - Philippe Dugourd
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622Lyon, France
| | - Naoki Ohashi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Tetsuo Uchikoshi
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Fabien Grasset
- Université Rennes, CNRS, ISCR, UMR6226, F-35000Rennes, France
- CNRS-Saint Gobain-NIMS, IRL3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, Japan
| |
Collapse
|
5
|
Silingardi F, Bonvicini F, Cassani MC, Mazzaro R, Rubini K, Gentilomi GA, Bigi A, Boanini E. Hydroxyapatite Decorated with Tungsten Oxide Nanoparticles: New Composite Materials against Bacterial Growth. J Funct Biomater 2022; 13:jfb13030088. [PMID: 35893456 PMCID: PMC9326691 DOI: 10.3390/jfb13030088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 01/26/2023] Open
Abstract
The availability of biomaterials able to counteract bacterial colonization is one of the main requirements of functional implants and medical devices. Herein, we functionalized hydroxyapatite (HA) with tungsten oxide (WO3) nanoparticles in the aim to obtain composite materials with improved biological performance. To this purpose, we used HA, as well as HA functionalized with polyacrilic acid (HAPAA) or poly(ethylenimine) (HAPEI), as supports and polyvinylpyrrolidone (PVP) as stabilizing agent for WO3 nanoparticles. The number of nanoparticles loaded on the substrates was determined through Molecular Plasma-Atomic Emission Spectroscopy and is quite small, so it cannot be detected through X-ray diffraction analysis. It increases from HAPAA, to HA, to HAPEI, in agreement with the different values of zeta potential of the different substrates. HRTEM and STEM images show the dimensions of the nanoparticles are very small, less than 1 nm. In physiological solution HA support displays a greater tungsten cumulative release than HAPEI, despite its smaller loaded amount. Indeed, WO3 nanoparticles-functionalized HA exhibits a remarkable antibacterial activity against the Gram-positive Staphylococcus aureus in absence of cytotoxicity, which could be usefully exploited in the biomedical field.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
- Correspondence: (M.C.C.); (E.B.)
| | - Raffaello Mazzaro
- Department of Phisics and Astronomy “A. Righi”, University of Bologna, Viale Berti Pichat 6/2, 40138 Bologna, Italy;
| | - Katia Rubini
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Adriana Bigi
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
| | - Elisa Boanini
- Department of Chemistry ‘‘Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (F.S.); (K.R.); (A.B.)
- Correspondence: (M.C.C.); (E.B.)
| |
Collapse
|
6
|
Kozlov DA, Artamonov KA, Revenko AO, Khazova KM, Chumakov RG, Garshev AV. Effect of the Graphitic Carbon Nitride Synthesis Atmosphere on its Activity in the Photocatalytic Generation of Hydrogen Peroxide. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gorobtsov PY, Simonenko TL, Simonenko NP, Simonenko EP, Sevastyanov VG, Kuznetsov NT. Synthesis of Nanoscale WO3 by Chemical Precipitation Using Oxalic Acid. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621120032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Structural and Magnetic Properties of NiZn Ferrite Nanoparticles Synthesized by a Thermal Decomposition Method. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ni1−xZnxFe2O4 (x = 0.5, 0.6, 0.7) nanoparticles were synthesized by a thermal decomposition method. The synthesized particles were identified as pure spinel ferrite structures by X-ray diffraction analysis, and they were calculated to be 46–51 nm in diameter by the Scherrer equation, depending on the composition. In the FE-SEM image, the ferrite nanoparticles have spherical shapes with slight agglomeration, and the particle size is about 50 nm, which was consistent with the value obtained by the Scherrer equation. The lattice parameter of the ferrite nanoparticles monotonically increased from 8.34 to 8.358 Å as the Zn concentration increased from 0.5 to 0.7. Initially, the saturation magnetization value slowly decreases from 81.44 to 83.97 emu/g, then quickly decreases to 71.84 emu/g as the zinc content increases from x = 0.5, through 0.6, to 0.7. Ni1−xZnxFe2O4 toroidal samples were prepared by sintering ferrite nanoparticles at 1250 °C and exhibited faceted grain morphologies in the FE-SEM images with their grain sizes being around 5 µm regardless of the Zinc content. The real magnetic permeability (μ′) of the toroidal samples measured at 5 MHz was monotonically increased from 106, through 150, to 217 with increasing the Zinc content from x = 0.5, through 0.6, to 0.7. The cutoff frequency of the ferrite toroidal samples was estimated to be about 20 MHz from the broad maximum point in the plot of imaginary magnetic permeability (μ″) vs. frequencies, which seemed to be associated with domain wall resonance.
Collapse
|
9
|
Kozlov DA, Kozlova TO, Shcherbakov AB, Anokhin EO, Ivanova OS, Baranchikov AE, Ivanov VK. UV-Induced Photocatalytic Reduction of Methylene Blue Dye in the Presence of Photochromic Tungsten Oxide Sols. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s003602362007013x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|