1
|
Xing J, Zhang H, Bai L, Zhu G, Yu Q, Huang B, Liu Y, Wang W, Li S, Liu Y. Nano-Voids in Ultrafine Explosive Particles: Characterization and Effects on Thermal Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3391-3399. [PMID: 36821086 DOI: 10.1021/acs.langmuir.2c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ultrafine explosives show high safety and reliable initiation and have been widely used in aerospace, military, and industrial systems. The outstanding performance of ultrafine explosives is largely given by the unique void defects according to the simulation results. However, the structures and effects of internal nano-voids in ultrafine explosive particles have been rarely investigated experimentally. In this work, contrast-variation small angle X-ray scattering was verified to reliably measure the structures of internal nano-voids in ultrafine explosive 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) and 2,2',4,4',6,6'-hexanitro diphenylethylene (HNS). The size of nano-voids is around 10 nm, and the estimated number of nano-voids in a single particle is considerable. Moreover, the thermal stability of ultrafine LLM-105 was improved via changing the structures of nano-voids. This work provides a methodology for the study of nano-void defects in ultrafine organic particles and may pave the path to enhance the performance of ultrafine explosives via defect engineering.
Collapse
Affiliation(s)
- Jiangtao Xing
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Haobin Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Liangfei Bai
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621999, China
| | - Guoxiang Zhu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Qian Yu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Bing Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yousong Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Weili Wang
- College of Ordnance Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Shichun Li
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
2
|
Zhou Y, Shi J, Henderson MJ, Li X, Tian F, Duan X, Tian Q, Almásy L. Densification of Two Forms of Nanostructured TATB under Uniaxial Die Pressures: A USAXS-SAXS Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:869. [PMID: 36903747 PMCID: PMC10005675 DOI: 10.3390/nano13050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Sequential ultra-small-angle and small-angle and X-ray scattering (USAXS and SAXS) measurements of hierarchical microstructure of a common energetic material, the high explosive 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB), were performed to follow the microstructure evolution upon applied pressure. The pellets were prepared by two different routes-die pressed from a nanoparticle form and a nano-network form of TATB powder. The derived structural parameters, such as void size, porosity, and the interface area, reflected the response of TATB under compaction. Three populations of voids were observed in the probed q range from 0.007 to 7 nm-1. The inter-granular voids with size larger than 50 nm were sensitive to low pressures and had a smooth interface with the TATB matrix. The inter-granular voids with size of ~10 nm exhibited a less volume-filling ratio at high pressures (>15 kN) as indicated by a decrease of the volume fractal exponent. The response of these structural parameters to external pressures implied that the main densification mechanisms under die compaction were the flow, fracture, and plastic deformation of the TATB granules. Compared to the nanoparticle TATB, the applied pressure strongly influenced the nano-network TATB due to its more uniform structure. The findings and research methods of this work provide insights into the structural evolution of TATB during densification.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jing Shi
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Mark Julian Henderson
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiaohui Duan
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Tian
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
| | - László Almásy
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
- Institute for Energy Security and Environmental Safety, Centre for Energy Research, 1121 Budapest, Hungary
| |
Collapse
|
3
|
Mani R, Peltonen L, Strachan CJ, Karppinen M, Louhi-Kultanen M. Nonclassical Crystallization and Core-Shell Structure Formation of Ibuprofen from Binary Solvent Solutions. CRYSTAL GROWTH & DESIGN 2023; 23:236-245. [PMID: 36624777 PMCID: PMC9817074 DOI: 10.1021/acs.cgd.2c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Liquid-liquidphase separation (LLPS) or dense liquid intermediates during the crystallization of pharmaceutical molecules is common; however, their role in alternative nucleation mechanisms is less understood. Herein, we report the formation of a dense liquid intermediate followed by a core-shell structure of ibuprofen crystals via nonclassical crystallization. The Raman and SAXS results of the dense phase uncover the molecular structural ordering and its role in nucleation. In addition to the dimer formation of ibuprofen, which is commonly observed in the solution phase, methyl group vibrations in the Raman spectra show intermolecular interactions similar to those in the solid phase. The SAXS data validate the cluster size differences in the supersaturated solution and dense phase. The focused-ion beam cut image shows the attachment of nanoparticles, and we proposed a possible mechanism for the transformation from the dense phase into a core-shell structure. The unstable phase or polycrystalline core and its subsequent dissolution from inside to outside or recrystallization by reversed crystal growth produces the core-shell structure. The LLPS intermediate followed by the core-shell structure and its dissolution enhancement unfold a new perspective of ibuprofen crystallization.
Collapse
Affiliation(s)
- Rajaboopathi Mani
- Department
of Chemical and Metallurgical Engineering, Aalto University, FI-00076 Aalto (Espoo), Finland
- Department
of Physics & Nanotechnology, SRM Institute
of Science & Technology, Kattankulathur 603203, Tamilnadu, India
| | - Leena Peltonen
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Clare J. Strachan
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, 00014 Helsinki, Finland
| | - Maarit Karppinen
- Department
of Chemistry and Materials Science, Aalto
University, FI-00076 Aalto (Espoo), Finland
| | - Marjatta Louhi-Kultanen
- Department
of Chemical and Metallurgical Engineering, Aalto University, FI-00076 Aalto (Espoo), Finland
| |
Collapse
|
4
|
Wu H, Dai T, Ao W, Shao S, Li Z, Luo F, Li J, Zhao D, Lan W, Zhang H, Tan H. The role of segmental mixing on the mechanical properties and oxidative stability of polydimethylsiloxane-based polyetherurethane. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Characterization of Nano-Scale Parallel Lamellar Defects in RDX and HMX Single Crystals by Two-Dimension Small Angle X-ray Scattering. Molecules 2022; 27:molecules27123871. [PMID: 35744992 PMCID: PMC9230898 DOI: 10.3390/molecules27123871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022] Open
Abstract
Nano-scale crystal defects extremely affect the security and reliability of explosive charges of weapons. In this work, the nano-scale crystal defects of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) single crystals were characterized by two-dimension SAXS. Deducing from the changes of SAXS pattern with sample stage rotating, we firstly found the parallel lamellar nano-scale defects in both RDX and HMX single crystals. Further analysis shows that the average diameter and thickness of nano-scale lamellar defects for RDX single crystal are 66.4 nm and 19.3 nm, respectively. The results of X-ray diffraction (XRD) indicate that the lamellar nano-scale defects distribute along the (001) in RDX and the (011) in HMX, which are verified to be the crystal planes with the lowest binding energy by the theoretical calculation.
Collapse
|
6
|
Investigation on the Evolution of Nano-Scale Defects of CL-20 Crystals under Thermal Treatment by Wide/Small-Angle X-ray Scattering. MATERIALS 2022; 15:ma15124258. [PMID: 35744317 PMCID: PMC9230737 DOI: 10.3390/ma15124258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022]
Abstract
Nano-scale crystal defects extremely affect the security and reliability of the explosive charges of weapons. In order to understand the evolution of nano-scale defects of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20) explosive crystals under thermal treatments, the specific surface, volume fraction and size distribution of the nano-scale defects were studied by using Wide Angle X-ray Scattering (WAXS) and Small Angle X-ray Scattering (SAXS) during the temperature range from 30 °C to 200 °C. The results showed that the number and size of the pores in CL-20 powder did not change significantly during the heating process before phase transformation (30–160 °C). At 170 °C, CL-20 began to convert from ε- to γ- phase, and the specific surface and volume fraction of the nano-scale defects increased significantly. Further investigation of the pore size distribution showed that the number of pores with a small size (radius 9–21 nm) changed particularly significantly, resulting from the cracking of the CL-20 crystal powder during phase transition. At 200 °C, the phase transition was completed and γ-CL-20 was created, and the small-sized pores gradually grew into medium-sized (radius 21–52 nm) pores over time when the temperature was fixed at 200 °C.
Collapse
|
7
|
Xing J, Wang W, Dong J, Yao T, Miao R, Du M, Wang Z. Characterization of the Internal Pores of LLM‐105 with Different Particle Sizes Using Contrast Variation Small Angle X‐Ray Scattering. PROPELLANTS EXPLOSIVES PYROTECHNICS 2022. [DOI: 10.1002/prep.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiangtao Xing
- College of Ordnance Engineering Naval University of Engineering Wuhan, 430000 China
| | - Weili Wang
- College of Ordnance Engineering Naval University of Engineering Wuhan, 430000 China
| | - Jun Dong
- College of Ordnance Engineering Naval University of Engineering Wuhan, 430000 China
| | - Tianle Yao
- College of Ordnance Engineering Naval University of Engineering Wuhan, 430000 China
| | - Run Miao
- College of Ordnance Engineering Naval University of Engineering Wuhan, 430000 China
| | - Maohua Du
- College of Ordnance Engineering Naval University of Engineering Wuhan, 430000 China
| | - Zhiqiang Wang
- School of Environment and Safety Engineering, North University of China Taiyuan 030051 China
| |
Collapse
|
8
|
Kamdem Tamo A, Doench I, Walter L, Montembault A, Sudre G, David L, Morales-Helguera A, Selig M, Rolauffs B, Bernstein A, Hoenders D, Walther A, Osorio-Madrazo A. Development of Bioinspired Functional Chitosan/Cellulose Nanofiber 3D Hydrogel Constructs by 3D Printing for Application in the Engineering of Mechanically Demanding Tissues. Polymers (Basel) 2021; 13:1663. [PMID: 34065272 PMCID: PMC8160918 DOI: 10.3390/polym13101663] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Soft tissues are commonly fiber-reinforced hydrogel composite structures, distinguishable from hard tissues by their low mineral and high water content. In this work, we proposed the development of 3D printed hydrogel constructs of the biopolymers chitosan (CHI) and cellulose nanofibers (CNFs), both without any chemical modification, which processing did not incorporate any chemical crosslinking. The unique mechanical properties of native cellulose nanofibers offer new strategies for the design of environmentally friendly high mechanical performance composites. In the here proposed 3D printed bioinspired CNF-filled CHI hydrogel biomaterials, the chitosan serves as a biocompatible matrix promoting cell growth with balanced hydrophilic properties, while the CNFs provide mechanical reinforcement to the CHI-based hydrogel. By means of extrusion-based printing (EBB), the design and development of 3D functional hydrogel scaffolds was achieved by using low concentrations of chitosan (2.0-3.0% (w/v)) and cellulose nanofibers (0.2-0.4% (w/v)). CHI/CNF printed hydrogels with good mechanical performance (Young's modulus 3.0 MPa, stress at break 1.5 MPa, and strain at break 75%), anisotropic microstructure and suitable biological response, were achieved. The CHI/CNF composition and processing parameters were optimized in terms of 3D printability, resolution, and quality of the constructs (microstructure and mechanical properties), resulting in good cell viability. This work allows expanding the library of the so far used biopolymer compositions for 3D printing of mechanically performant hydrogel constructs, purely based in the natural polymers chitosan and cellulose, offering new perspectives in the engineering of mechanically demanding hydrogel tissues like intervertebral disc (IVD), cartilage, meniscus, among others.
Collapse
Affiliation(s)
- Arnaud Kamdem Tamo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Lukas Walter
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Laurent David
- Ingénierie des Matériaux Polymères IMP UMR 5223—CNRS, Université Claude Bernard Lyon 1, Université de Lyon, CEDEX, 69622 Villeurbanne, France; (A.M.); (G.S.); (L.D.)
| | - Aliuska Morales-Helguera
- Chemical Bioactive Center CBQ, Molecular Simulation and Drug Design Group, Central University of Las Villas, Santa Clara 50400, Cuba;
| | - Mischa Selig
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Bernd Rolauffs
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Anke Bernstein
- Center for Tissue Replacement, Regeneration & Neogenesis—G.E.R.N., Department of Orthopedics and Trauma Surgery, University of Freiburg, 79108 Freiburg, Germany; (M.S.); (B.R.); (A.B.)
| | - Daniel Hoenders
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Andreas Walther
- Department of Chemistry, University Mainz, 55128 Mainz, Germany; (D.H.); (A.W.)
| | - Anayancy Osorio-Madrazo
- Laboratory for Sensors, Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (A.K.T.); (I.D.); (L.W.)
- Freiburg Materials Research Center—FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies—FIT, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|