1
|
Roy PK, Roy A, Jeon EB, DeWitt CAM, Park JW, Park SY. Comprehensive analysis of predominant pathogenic bacteria and viruses in seafood products. Compr Rev Food Sci Food Saf 2024; 23:e13410. [PMID: 39030812 DOI: 10.1111/1541-4337.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Anamika Roy
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | - Eun Bi Jeon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
| | | | - Jae W Park
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| | - Shin Young Park
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Republic of Korea
- OSU Seafood Lab, Oregon State University, Astoria, Oregon, USA
| |
Collapse
|
2
|
Wu P, Yang J, Meng X, Weng Y, Lin Y, Li R, Lv X, Ni L, Han JZ, Fu C. The inhibitory action of lactocin 63 on deterioration of seabass (Lateolabrax japonicus) during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4015-4027. [PMID: 38294304 DOI: 10.1002/jsfa.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The bacteriocins, particularly derived from lactic acid bacteria, currently exhibit potential as a promising food preservative owing to their low toxicity and potent antimicrobial activity. This study aimed to evaluate the efficacy of lactocin 63, produced by Lactobacillus coryniformis, in inhibiting the deterioration of Lateolabrax japonicas during chilled storage, while also investigating its underlying inhibitory mechanism. The measurement of total viable count, biogenic amines, and volatile organic compounds were conducted, along with high-throughput sequencing and sensory evaluation. RESULTS The findings demonstrated that treatment with lactocin 63 resulted in a notable retardation of bacterial growth in L. japonicas fish fillet during refrigerated storage compared with the water-treated and nisin-treated groups. Moreover, lactocin 63 effectively maintained the microbial flora balance in the fish fillet and inhibited the proliferation and metabolic activity of specific spoilage microorganisms, particularly Shewanella, Pseudomonas, and Acinetobacter. Furthermore, the production of unacceptable volatile organic compounds (e.g. 1-octen-3-ol, hexanal, nonanal), as well as the biogenic amines derived from the bacterial metabolism, could be hindered, thus preventing the degradation in the quality of fish fillets and sustaining relatively high sensory quality. CONCLUSION The results of this study provide valuable theoretical support for the development and application of lactocin 63, or other bacteriocins derived from lactic acid bacteria, as potential bio-preservatives in aquatic food. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xiaojie Meng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ruili Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Caili Fu
- Fujian Key Laboratory of Inspection and Quarantine Technology Research, Fuzhou, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Moser B, Steininger-Mairinger T, Jandric Z, Zitek A, Scharl T, Hann S, Troyer C. Spoilage markers for freshwater fish: A comprehensive workflow for non-targeted analysis of VOCs using DHS-GC-HRMS. Food Res Int 2023; 172:113123. [PMID: 37689889 DOI: 10.1016/j.foodres.2023.113123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
Changes of volatile organic compounds (VOCs) patterns during 6 days of storage at +4 °C were investigated in different freshwater fish species, namely carp and trout, using dynamic headspace gas chromatography time-of-flight mass spectrometry (DHS-GC-TOFMS). DHS parameters were systematically optimized to establish optimum extraction and pre-concentration of VOCs. Moreover, different sample preparation methods were tested: mincing with a manual meat grinder, as well as mincing plus homogenization with a handheld homogenizer both without and with water addition. The addition of water during sample preparation led to pronounced changes of the volatile profiles, depending on the molecular structure and lipophilicity of the analytes, resulting in losses of up to 98 % of more lipophilic compounds (logP > 3). The optimized method was applied to trout and carp. Trout samples of different storage days were compared using univariate (Mann-Whitney U test, fold change calculation) and multivariate (OPLS-DA) statistics. 37 potential spoilage markers were selected; for 11 compounds identity could be confirmed via measurement of authentic standards and 10 compounds were identified by library spectrum match. 22 compounds were also found to be statistically significant spoilage markers in carp. Merging results of the different statistical approaches, the list of 37 compounds could be narrowed down to the 14 most suitable for trout spoilage assessment. This study comprises a systematic evaluation of the capabilities of DHS-GC coupled to high-resolution (HR) MS for studying spoilage in different freshwater fish species, including a comprehensive data evaluation workflow.
Collapse
Affiliation(s)
- Bernadette Moser
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Teresa Steininger-Mairinger
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria
| | - Zora Jandric
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; VinoStellar OG, Keplerplatz 13, Vienna, Austria
| | - Andreas Zitek
- FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Theresa Scharl
- University of Natural Resources and Life Sciences, Department of Landscape, Spatial and Infrastructure Sciences, Institute of Statistics, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria; FFoQSI GmbH, Technopark 1D, 3430 Tulln an der Donau, Austria
| | - Christina Troyer
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Hu Y, Tian Y, Zhu J, Wen R, Chen Q, Kong B. Technological characterization and flavor-producing potential of lactic acid bacteria isolated from traditional dry fermented sausages in northeast China. Food Microbiol 2022; 106:104059. [DOI: 10.1016/j.fm.2022.104059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
|
5
|
Wen X, Zhang D, Li X, Ding T, Liang C, Zheng X, Yang W, Hou C. Dynamic changes of bacteria and screening of potential spoilage markers of lamb in aerobic and vacuum packaging. Food Microbiol 2022; 104:103996. [DOI: 10.1016/j.fm.2022.103996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
|
6
|
Anagnostopoulos DA, Parlapani FF, Boziaris IS. The evolution of knowledge on seafood spoilage microbiota from the 20th to the 21st century: Have we finished or just begun? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Kyoui D, Fukasawa Y, Miyanaga W, Nakamura Y, Yamane T, Sugita K, Yamadera S, Kai M, Shinoda K, Kawarai T, Ogihara H. Identification of changes in the microflora composition of Japanese horse mackerel (Trachurus japonicus) during storage to identify specific spoilageorganisms. Curr Res Food Sci 2022; 5:1216-1224. [PMID: 35996618 PMCID: PMC9391519 DOI: 10.1016/j.crfs.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Japanese horse mackerel (Trachurus japonicus) is an important marine resource, and its loss and waste should be reduced. This study aimed to identify the changes in the microflora composition during storage and specific spoilage organisms (SSOs) in Japanese horse mackerel, for spoilage prevention. They were stored at either 20 °C or 4 °C aerobically, and the bacterial viable counts, concentration of total volatile basic nitrogen (TVB-N), and microflora composition for each group were analyzed. Samples stored at 20 °C for 48 h showed similar viable counts to those stored at 4 °C for 168 h; however, the TVB-N concentrations increased at 20 °C, but not at 4 °C. 16S rRNA metagenome analysis showed that Shewanella became dominant genus in the microflora regardless of the storage temperature. However, dominant amplicon sequence variants (ASVs), which are a more detailed classification level than the genus, differed depending on the storage temperatures; therefore, dominant ASVs at 20 °C were assumed to be potential SSOs. Shewanella sp. Strain NFH-SH190041, which was genetically closely related to the dominant ASVs at 20 °C, was isolated, and its spoilage ability was verified. The strain NFH-SH190041 may be considered a novel SSO of Japanese horse mackerel because its 16S rRNA sequence is clearly different from those of known species. Changes in microflora in every part of the Japanese horse mackerel were visualized. NFH-SH190041 was assumed as novel specific spoilage organism. The spoilage ability of NFH-SH190041 was verified.
Collapse
|
8
|
Antibacterial Effect of Dihydromyricetin on Specific Spoilage Organisms of Hybrid Grouper. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5569298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study aimed to investigate the mechanism of antibacterial activity level inhibition of dihydromyricetin (DMY) against specific spoilage bacteria of grouper. Firstly, the specific spoilage bacteria of grouper in the cold storage process are Pseudomonas antarctica (P. antarctica), which are selected by calculating the spoilage metabolite yield factor. It was determined that the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of DMY against grouper spoilage bacteria were 2.0 mg/mL and 6.4 mg/mL, respectively. DMY was added to the matrix of chitosan and sodium alginate, and DMY emulsions of different concentrations (0 MIC, 1 MIC, 2 MIC, 4 MIC) were prepared and characterized by differential calorimetry methods. Through analyzing cell permeability, enzyme activity, and images of the confocal laser scanning microscope (CLSM), we further studied the antibacterial mechanism of DMY emulsion on specific spoilage bacteria. The results showed that, with the increase of DMY concentration in the treatment group, the leakage of nucleic acid and protein increased significantly, the activity of ATPase and three critical enzymes in the Embden-Meyerhof-Parnas (EMP) pathway decreased significantly, and the activity of AKPase did not decrease significantly, . The metabolic activity and viability are reduced considerably. Analysis of the above results shows that DMY inhibits the growth and reproduction of P. antarctica by interfering with the metabolic activity of bacteria and destroying the function of bacterial cell membranes but has no inhibitory effect on the activity of AKPase. This study proves that DMY could be an effective and natural antibacterial agent against specific spoilage bacteria in aquatic products.
Collapse
|
9
|
Chen Z, Tang H, Ou C, Xie C, Cao J, Zhang X. A comparative study of volatile flavor components in four types of zaoyu using comprehensive two‐dimensional gas chromatography in combination with time‐of‐flight mass spectrometry. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zhipeng Chen
- Department of Food Science and Engineering College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Haiqing Tang
- Department of Food Nutrition and Testing Faculty of Food Science Zhejiang Pharmaceutical College Ningbo China
| | - Changrong Ou
- Department of Food Science and Engineering College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Cheng Xie
- Department of Food Science and Engineering College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Jinxuan Cao
- Department of Food Science and Engineering College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| | - Xin Zhang
- Department of Food Science and Engineering College of Food and Pharmaceutical Sciences Ningbo University Ningbo China
| |
Collapse
|
10
|
|
11
|
High-CO 2 Modified Atmosphere Packaging with Superchilling (-1.3 °C) Inhibit Biochemical and Flavor Changes in Turbot ( Scophthalmus maximus) during Storage. Molecules 2020; 25:molecules25122826. [PMID: 32575384 PMCID: PMC7356536 DOI: 10.3390/molecules25122826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The effects of modified atmosphere packaging (MAP) in combination with superchilling (−1.3 °C) on the physicochemical properties, flavor retention, and organoleptic evaluation of turbot samples were investigated during 27 days storage. Results showed that high-CO2 packaging (70% or 60% CO2) combined with superchilling could reduce the productions of off-flavor compounds, including total volatile basic nitrogen (TVB-N) and ATP-related compounds. Twenty-four volatile organic compounds were determined by gas chromatography–mass spectrometry (GC/MS) during storage, including eight alcohols, 11 aldehydes, and five ketones. The relative content of off-odor volatiles, such as 1-octen-3-ol, 1-penten-3-ol, (E)-2-octenal, octanal, and 2,3-octanedione, was also reduced by high-CO2 packaging during superchilling storage. Further, 60% CO2/10% O2/30% N2 with superchilling (−1.3 °C) could retard the water migration on the basis of the water holding capacity, low field NMR, and MRI results, and maintain the quality of turbot according to organoleptic evaluation results during storage
Collapse
|