1
|
Montes de Oca-Estévez MJ, Prosmiti R. Microsolvation of a Proton by Ar Atoms: Structures and Energetics of Ar nH + Clusters. Molecules 2024; 29:4084. [PMID: 39274931 PMCID: PMC11487409 DOI: 10.3390/molecules29174084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
We present a computational investigation on the structural arrangements and energetic stabilities of small-size protonated argon clusters, Ar nH +. Using high-level ab initio electronic structure computations, we determined that the linear symmetric triatomic ArH +Ar ion serves as the molecular core for all larger clusters studied. Through harmonic normal-mode analysis for clusters containing up to seven argon atoms, we observed that the proton-shared vibration shifts to lower frequencies, consistent with measurements in gas-phase IRPD and solid Ar-matrix isolation experiments. We explored the sum-of-potentials approach by employing kernel-based machine-learning potential models trained on CCSD(T)-F12 data. These models included expansions of up to two-body, three-body, and four-body terms to represent the underlying interactions as the number of Ar atoms increases. Our results indicate that the four-body contributions are crucial for accurately describing the potential surfaces in clusters with n> 3. Using these potential models and an evolutionary programming method, we analyzed the structural stability of clusters with up to 24 Ar atoms. The most energetically favored Ar nH + structures were identified for magic size clusters at n = 7, 13, and 19, corresponding to the formation of Ar-pentagon rings perpendicular to the ArH +Ar core ion axis. The sequential formation of such regular shell structures is compared to ion yield data from high-resolution mass spectrometry measurements. Our results demonstrate the effectiveness of the developed sum-of-potentials model in describing trends in the nature of bonding during the single proton microsolvation by Ar atoms, encouraging further quantum nuclear studies.
Collapse
Affiliation(s)
- María Judit Montes de Oca-Estévez
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain;
- Atelgraphics S.L., Mota de Cuervo 42, 28043 Madrid, Spain
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain;
| |
Collapse
|
2
|
Araujo L, Fantuzzi F, Cardozo TM. Chemical Aristocracy: He 3 Dication and Analogous Noble-Gas-Exclusive Covalent Compounds. J Phys Chem Lett 2024; 15:3757-3763. [PMID: 38551487 PMCID: PMC11017316 DOI: 10.1021/acs.jpclett.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Herein, we predict the first set of covalently bonded triatomic molecular compounds composed exclusively of noble gases. Using a combination of double-hybrid DFT, CCSD(T), and MRCI+Q calculations and a range of bonding analyses, we explored a set of 270 doubly charged triatomics, which included various combinations of noble gases and main group elements. This extensive exploration uncovered nine noble-gas-exclusive covalent compounds incorporating helium, neon, argon, or combinations thereof, exemplified by cases such as He32+ and related systems. This work brings to light a previously uncharted domain of noble gas chemistry, demonstrating the potential of noble gases in forming covalent molecular clusters.
Collapse
Affiliation(s)
- Lucas Araujo
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil
| | - Felipe Fantuzzi
- School
of Chemistry and Forensic Science, University
of Kent, Park Wood Road, Canterbury CT2 7NH, U.K.
| | - Thiago M. Cardozo
- Instituto
de Química, Universidade Federal
do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
3
|
Borocci S, Grandinetti F, Sanna N. Complexes of NgHNg+ (Ng = He, Ne, Ar) with He: Theoretical insights into structure, stability, and bonding character. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Zhou L, Hu X, Peng Y, Qiang J, Lu P, Lin K, Pan S, Gong X, Jiang W, Jiang Z, Lu C, Ni H, Jin C, Lu R, Wu Y, Wang J, Wu J. Enhancing Strong-Field Dissociation of H_{2}^{+} in Helium Nanodroplets. PHYSICAL REVIEW LETTERS 2023; 130:033201. [PMID: 36763404 DOI: 10.1103/physrevlett.130.033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
We investigate the above-threshold multiphoton ionization of H_{2} embedded in superfluid He nanodroplets driven by ultraviolet femtosecond laser pulses. We find that the surrounding He atoms enhance the dissociation of in-droplet H_{2}^{+} from lower vibrational states as compared to that of isolated gas-phase molecules. As a result, the discrete peaks in the photoelectron energy spectrum correlated with the HHe^{+} from the dissociative in-droplet molecule shift to higher energies. Based on the electron-nuclear correlation, the photoelectrons with higher energies are correlated to the nuclei of the low-vibrationally excited molecular ion as the nuclei share less photon energy. Our time-dependent nuclear wave packet quantum simulation using a simplified He-H_{2}^{+} system confirms the joint contribution of the driving laser field and the neighboring He atoms to the dissociation dynamics of the solute molecular ion. The results strengthen our understanding of the role of the environment on light-induced ultrafast dynamics of molecules.
Collapse
Affiliation(s)
- Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoqing Hu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Yigeng Peng
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junjie Qiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Kang Lin
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhejun Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Cheng Jin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ruifeng Lu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yong Wu
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
- HEDPS, Center of Applied Physics and Technology, Peking University, Beijing 10084, China
| | - Jianguo Wang
- Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Shanxi 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
| |
Collapse
|
5
|
Kędziera D, Rauhut G, Császár AG. Structure, energetics, and spectroscopy of the chromophores of HHe+n, H 2He+n, and He+n clusters and their deuterated isotopologues. Phys Chem Chem Phys 2022; 24:12176-12195. [PMID: 35543594 DOI: 10.1039/d1cp05535f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The linear molecular ions H2He+, HHe+2, and He+3 are the central units (chromophores) of certain He-solvated complexes of the H2He+n, HHe+n, and He+n families, respectively. These are complexes which do exist, according to mass-spectrometry studies, up to very high n values. Apparently, for some of the H2He+n and He+n complexes, the linear symmetric tetratomic H2He+2 and the diatomic He+2 cations, respectively, may also be the central units. In this study, definitive structures, relative energies, zero-point vibrational energies, and (an)harmonic vibrational fundamentals, and, in some cases, overtones and combination bands, are established mostly for the triatomic chromophores. The study is also extended to the deuterated isotopologues D2He+, DHe+2, and D2He+2. To facilitate and improve the electronic-structure computations performed, new atom-centered, fixed-exponent, Gaussian-type basis sets called MAX, with X = T(3), Q(4), P(5), and H(6), are designed for the H and He atoms. The focal-point-analysis (FPA) technique is employed to determine definitive relative energies with tight uncertainties for reactions involving the molecular ions. The FPA results determined include the 0 K proton and deuteron affinities of the 4He atom, 14 875(9) cm-1 [177.95(11) kJ mol-1] and 15 229(8) cm-1 [182.18(10) kJ mol-1], respectively, the dissociation energies of the He+2 → He+ + He, HHe+2 → HHe+ + He, and He+3 → He+2 + He reactions, 19 099(13) cm-1 [228.48(16) kJ mol-1], 3948(7) cm-1 [47.23(8) kJ mol-1], and 1401(12) cm-1 [16.76(14) kJ mol-1], respectively, the dissociation energy of the DHe+2 → DHe+ + He reaction, 4033(6) cm-1 [48.25(7) kJ mol-1], the isomerization energy between the two linear isomers of the [H, He, He]+ system, 3828(40) cm-1 [45.79(48) kJ mol-1], and the dissociation energies of the H2He+ → H+2 + He and the H2He+2 → H2He+ + He reactions, 1789(4) cm-1 [21.40(5) kJ mol-1] and 435(6) cm-1 [5.20(7) kJ mol-1], respectively. The FPA estimates of the first dissociation energy of D2He+ and D2He+2 are 1986(4) cm-1 [23.76(5) kJ mol-1] and 474(5) cm-1 [5.67(6) kJ mol-1], respectively. Determining the vibrational fundamentals of the triatomic chromophores with second-order vibrational perturbation theory (VPT2) and vibrational configuration interaction (VCI) techniques, both built around the Eckart-Watson Hamiltonian, proved unusually challenging. For the species studied, VPT2 has difficulties yielding dependable results, in some cases even for the fundamentals of the H-containing molecular cations, while carefully executed VCI computations yield considerably improved spectroscopic results. In a few cases unusually large anharmonic corrections to the fundamentals, on the order of 15% of the harmonic value, have been observed.
Collapse
Affiliation(s)
- Dariusz Kędziera
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland.
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| |
Collapse
|
6
|
Tan JA, Kuo JL. Spectral Signatures of Protonated Noble Gas Clusters of Ne, Ar, Kr, and Xe: From Monomers to Trimers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103198. [PMID: 35630674 PMCID: PMC9143425 DOI: 10.3390/molecules27103198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
The structures and spectral features of protonated noble gas clusters are examined using a first principles approach. Protonated noble gas monomers (NgH+) and dimers (NgH+Ng) have a linear structure, while the protonated noble gas trimers (Ng3H+) can have a T-shaped or linear structure. Successive binding energies for these complexes are calculated at the CCSD(T)/CBS level of theory. Anharmonic simulations for the dimers and trimers unveil interesting spectral features. The symmetric NgH+Ng are charactized by a set of progression bands, which involves one quantum of the asymmetric Ng-H+ stretch with multiple quanta of the symmetric Ng-H+ stretch. Such a spectral signature is very robust and is predicted to be observed in both T-shaped and linear isomers of Ng3H+. Meanwhile, for selected asymmetric NgH+Ng’, a Fermi resonance interaction involving the first overtone of the proton bend with the proton stretch is predicted to occur in ArH+Kr and XeH+Kr.
Collapse
|
7
|
González-Sánchez L, Yurtsever E, Wester R, Gianturco FA. Dynamics of HeHHe + Rotational State Changes Induced by Collision with He: A Possible New Path in Early Universe Chemistry. J Phys Chem A 2021; 125:3748-3759. [PMID: 33899485 PMCID: PMC8154607 DOI: 10.1021/acs.jpca.1c01820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Indexed: 11/28/2022]
Abstract
Ab initio calculations are employed to generate the rigid rotor (RR) potential energy surface (PES) describing the interaction of the linear molecular cation HeHHe+, at its equilibrium geometry, with the neutral He atom. The resulting interaction is employed to investigate the efficiency of rotational state-changing collisions at the temperatures relevant to the early universe conditions, where the latter molecule has been postulated to exist, albeit not yet observed. The inelastic rate coefficients are found to be fairly large and are compared with those found for another important cation just recently observed in the interstellar medium: the HeH+ polar molecule. The possibility for this cation to provide new options to energy dissipation routes under early universe conditions after the recombination era is briefly discussed.
Collapse
Affiliation(s)
- L. González-Sánchez
- Departamento de
Química Física, University
of Salamanca, Plaza de los Caídos sn, 37008 Salamanca, Spain
| | - E. Yurtsever
- Department of Chemistry, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - R. Wester
- Institut fur Ionen Physik und Angewandte Physik, Leopold-Franzens-Universitat, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - F. A. Gianturco
- Institut fur Ionen Physik und Angewandte Physik, Leopold-Franzens-Universitat, Technikerstrasse 25, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
On the Proton-Bound Noble Gas Dimers (Ng-H-Ng) + and (Ng-H-Ng') + (Ng, Ng'= He-Xe): Relationships betweenStructure, Stability, and Bonding Character. Molecules 2021; 26:molecules26051305. [PMID: 33671081 PMCID: PMC7957648 DOI: 10.3390/molecules26051305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
The structure, stability, and bonding character of fifteen (Ng-H-Ng)+ and (Ng-H-Ng’)+ (Ng, Ng’ = He-Xe) compounds were explored by theoretical calculations performed at the coupled cluster level of theory. The nature of the stabilizing interactions was, in particular, assayed using a method recently proposed by the authors to classify the chemical bonds involving the noble-gas atoms. The bond distances and dissociation energies of the investigated ions fall in rather large intervals, and follow regular periodic trends, clearly referable to the difference between the proton affinity (PA) of the various Ng and Ng’. These variations are nicely correlated with the bonding situation of the (Ng-H-Ng)+ and (Ng-H-Ng’)+. The Ng-H and Ng’-H contacts range, in fact, between strong covalent bonds to weak, non-covalent interactions, and their regular variability clearly illustrates the peculiar capability of the noble gases to undergo interactions covering the entire spectrum of the chemical bond.
Collapse
|
9
|
González-Lezana T, Echt O, Gatchell M, Bartolomei M, Campos-Martínez J, Scheier P. Solvation of ions in helium. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1794585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - Olof Echt
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics, University of New Hampshire, Durham, NH, USA
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics, Stockholm University, Stockholm, Sweden
| | - Massimiliano Bartolomei
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - José Campos-Martínez
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Grandinetti F. Cationic Noble-Gas Hydrides: From Ion Sources to Outer Space. Front Chem 2020; 8:462. [PMID: 32637393 PMCID: PMC7317115 DOI: 10.3389/fchem.2020.00462] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/04/2020] [Indexed: 11/24/2022] Open
Abstract
Cationic species with noble gas (Ng)-hydrogen bonds play a major role in the gas-phase ion chemistry of the group 18 elements. These species first emerged more than 90 years ago, when the simplest HeH+ and HeH2 + were detected from ionized He/H2 mixtures. Over the years, the family has considerably expanded and currently includes various bonding motifs that are investigated with intense experimental and theoretical interest. Quite recently, the results of these studies acquired new and fascinating implications. The diatomic ArH+ and HeH+ were, in fact, detected in various galactic and extragalactic regions, and this stimulates intriguing questions concerning the actual role in the outer space of the Ng-H cations observed in the laboratory. The aim of this review is to briefly summarize the most relevant information currently available on the structure, stability, and routes of formation of these fascinating systems.
Collapse
Affiliation(s)
- Felice Grandinetti
- Dipartimento per la Innovazione nei Sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, Viterbo, Italy
- Istituto per i Sistemi Biologici del CNR, Monterotondo, Italy
| |
Collapse
|
11
|
Töpfer M, Jensen A, Nagamori K, Kohguchi H, Szidarovszky T, Császár AG, Schlemmer S, Asvany O. Spectroscopic signatures of HHe 2+ and HHe 3. Phys Chem Chem Phys 2020; 22:22885-22888. [PMID: 33034329 DOI: 10.1039/d0cp04649c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using two different action spectroscopic techniques, a high-resolution quantum cascade laser operating around 1300 cm-1 and a cryogenic ion trap machine, the proton shuttle motion of the cations HHe2+ and HHe3+ has been probed at a nominal temperature of 4 K. For HHe3+, the loosely bound character of this complex allowed predissociation spectroscopy to be used, and the observed broad features point to a lifetime of a few ps in the vibrationally excited state. For He-H+-He, a fundamental linear molecule consisting of only three nuclei and four electrons, the method of laser-induced inhibition of complex growth (LIICG) enabled the measurement of three accurate rovibrational transitions, pinning down its molecular parameters for the first time.
Collapse
Affiliation(s)
- Matthias Töpfer
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany.
| | - Anders Jensen
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany.
| | - Keigo Nagamori
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Hiroshi Kohguchi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
| | - Tamás Szidarovszky
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Attila G Császár
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Stephan Schlemmer
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany.
| | - Oskar Asvany
- I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany.
| |
Collapse
|