1
|
Wang X, Yin QH, Wan LL, Sun RL, Wang G, Gu JF, Tang DC. Research progress on the effect of pyroptosis on the occurrence, development, invasion and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:3410-3427. [PMID: 39171180 PMCID: PMC11334039 DOI: 10.4251/wjgo.v16.i8.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Pyroptosis is a type of programmed cell death mediated by gasdermines (GSDMs). The N-terminal domain of GSDMs forms pores in the plasma membrane, causing cell membrane rupture and the release of cell contents, leading to an inflammatory response and mediating pyrodeath. Pyroptosis plays an important role in inflammatory diseases and malignant tumors. With the further study of pyroptosis, an increasing number of studies have shown that the pyroptosis pathway can regulate the tumor microenvironment and antitumor immunity of colorectal cancer and is closely related to the occurrence, development, treatment and prognosis of colorectal cancer. This review aimed to explore the molecular mechanism of pyroptosis and the role of pyroptosis in the occurrence, development, treatment and prognosis of colorectal cancer (CRC) and to provide ideas for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xu Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Qi-Hang Yin
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lin-Lu Wan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ruo-Lan Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gang Wang
- Department of Ana and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jun-Fei Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - De-Cai Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
2
|
Li B, Han Y, Fu Z, Chai Y, Guo X, Du S, Li C, Wang D. The causal relationship between gut microbiota and lymphoma: a two-sample Mendelian randomization study. Front Immunol 2024; 15:1397485. [PMID: 38774867 PMCID: PMC11106390 DOI: 10.3389/fimmu.2024.1397485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Background Previous studies have indicated a potential link between the gut microbiota and lymphoma. However, the exact causal interplay between the two remains an area of ambiguity. Methods We performed a two-sample Mendelian randomization (MR) analysis to elucidate the causal relationship between gut microbiota and five types of lymphoma. The research drew upon microbiome data from a research project of 14,306 participants and lymphoma data encompassing 324,650 cases. Single-nucleotide polymorphisms were meticulously chosen as instrumental variables according to multiple stringent criteria. Five MR methodologies, including the inverse variance weighted approach, were utilized to assess the direct causal impact between the microbial exposures and lymphoma outcomes. Moreover, sensitivity analyses were carried out to robustly scrutinize and validate the potential presence of heterogeneity and pleiotropy, thereby ensuring the reliability and accuracy. Results We discerned 38 potential causal associations linking genetic predispositions within the gut microbiome to the development of lymphoma. A few of the more significant results are as follows: Genus Coprobacter (OR = 0.619, 95% CI 0.438-0.873, P = 0.006) demonstrated a potentially protective effect against Hodgkin's lymphoma (HL). Genus Alistipes (OR = 0.473, 95% CI 0.278-0.807, P = 0.006) was a protective factor for diffuse large B-cell lymphoma. Genus Ruminococcaceae (OR = 0.541, 95% CI 0.341-0.857, P = 0.009) exhibited suggestive protective effects against follicular lymphoma. Genus LachnospiraceaeUCG001 (OR = 0.354, 95% CI 0.198-0.631, P = 0.0004) showed protective properties against T/NK cell lymphoma. The Q test indicated an absence of heterogeneity, and the MR-Egger test did not show significant horizontal polytropy. Furthermore, the leave-one-out analysis failed to identify any SNP that exerted a substantial influence on the overall results. Conclusion Our study elucidates a definitive causal link between gut microbiota and lymphoma development, pinpointing specific microbial taxa with potential causative roles in lymphomagenesis, as well as identifying probiotic candidates that may impact disease progression, which provide new ideas for possible therapeutic approaches to lymphoma and clues to the pathogenesis of lymphoma.
Collapse
Affiliation(s)
- Biyun Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yahui Han
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyu Fu
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujie Chai
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xifeng Guo
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shurui Du
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dao Wang
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chopra H, Goyal R, Baig AA, Arora S, Dua K, Gautam RK. Synbiotics in Colon Cancer. SYNBIOTICS FOR THE MANAGEMENT OF CANCER 2023:115-133. [DOI: 10.1007/978-981-19-7550-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Chen Y, Yang B, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Exploiting lactic acid bacteria for colorectal cancer: a recent update. Crit Rev Food Sci Nutr 2022; 64:5433-5449. [PMID: 36530047 DOI: 10.1080/10408398.2022.2154742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. Currently, chemotherapy and radiotherapy used to treat CRC exhibit many side effects, hence, it is an urgent need to design effective therapies to prevent and treat CRC. Lactic acid bacteria (LAB) can regulate gut microbiota, intestinal immunity, and intestinal mechanical barrier, which is becoming a hot product for the prevention and treatment of CRC, whereas comprehensive reviews of their anti-CRC mechanisms are limited. This review systematically reveals the latest incidence, mortality, risk factors, and molecular mechanisms of CRC, then summarizes the roles of probiotics in alleviating CRC in animal and clinical studies and critically reviews the possible mechanisms by which these interventions exert their activities. It then shows the limitations in mechanisms and clinical studies, and the suggestions for future research are also put forward, which will play an important role in guiding and promoting the basic and clinical research of remising CRC by LAB and the development of LAB products.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Gong W, Yang K, Zhao W, Zheng J, Yu J, Guo K, Sun X. Intestinal Gasdermins for regulation of inflammation and tumorigenesis. Front Immunol 2022; 13:1052111. [PMID: 36505474 PMCID: PMC9732009 DOI: 10.3389/fimmu.2022.1052111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
Gasdermins (GSDMs) protein family express in intestinal epithelial cells or lamina propria immune cells, and play a nonnegligible function during gut homeostasis. With the gradually in-depth investigation of GSDMs protein family, the proteases that cleave GSDMA-E have been identified. Intestinal GSDMs-induced pyroptosis is demonstrated to play a crucial role in the removal of self-danger molecules and clearance of pathogenic organism infection by mediating inflammatory reaction and collapsing the protective niche for pathogens. Simultaneously, excessive pyroptosis leading to the release of cellular contents including inflammatory mediators into the extracellular environment, enhancing the mucosal immune response. GSDMs-driver pyroptosis also participates in a novel inflammatory cell death, PANoptosis, which makes a significant sense to the initiation and progression of gut diseases. Moreover, GSDMs are expressed in healthy intestinal tissue without obvious pyroptosis and inflammation, indicating the potential intrinsic physiological functions of GSDMs that independent of pyroptotic cell death during maintenance of intestinal homeostasis. This review provides an overview of the latest advances in the physiological and pathological properties of GSDMs, including its mediated pyroptosis, related PANoptosis, and inherent functions independent of pyroptosis, with a focus on their roles involved in intestinal inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Kui Yang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Zhao
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbao Zheng
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junhui Yu
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| | - Kun Guo
- Department of General Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Junhui Yu, ; Kun Guo, ; Xuejun Sun,
| |
Collapse
|
6
|
Non-Canonical Programmed Cell Death in Colon Cancer. Cancers (Basel) 2022; 14:cancers14143309. [PMID: 35884370 PMCID: PMC9320762 DOI: 10.3390/cancers14143309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Non-canonical PCD is an important player in colon cancer cell suicide. It influences colon cancer in many ways, such as through tumorigenesis, treatment, and prognosis. In this review, we present the mechanism, application, and prospect of different types of non-canonical PCD in colon cancer. Abstract Programmed cell death (PCD) is an evolutionarily conserved process of cell suicide that is regulated by various genes and the interaction of multiple signal pathways. Non-canonical programmed cell death (PCD) represents different signaling excluding apoptosis. Colon cancer is the third most incident and the fourth most mortal worldwide. Multiple factors such as alcohol, obesity, and genetic and epigenetic alternations contribute to the carcinogenesis of colon cancer. In recent years, emerging evidence has suggested that diverse types of non-canonical programmed cell death are involved in the initiation and development of colon cancer, including mitotic catastrophe, ferroptosis, pyroptosis, necroptosis, parthanatos, oxeiptosis, NETosis, PANoptosis, and entosis. In this review, we summarized the association of different types of non-canonical PCD with tumorigenesis, progression, prevention, treatments, and prognosis of colon cancer. In addition, the prospect of drug-resistant colon cancer therapy related to non-canonical PCD, and the interaction between different types of non-canonical PCD, was systemically reviewed.
Collapse
|
7
|
Jampílek J, Kráľová K, Bella V. Probiotics and prebiotics in the prevention and management of human cancers (colon cancer, stomach cancer, breast cancer, and cervix cancer ). PROBIOTICS IN THE PREVENTION AND MANAGEMENT OF HUMAN DISEASES 2022:187-212. [DOI: 10.1016/b978-0-12-823733-5.00009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Caballero AM, Villagrán VAS, Serna AJ, Farrés A. Challenges in the production and use of probiotics as therapeuticals in cancer treatment or prevention. J Ind Microbiol Biotechnol 2021; 48:6356962. [PMID: 34427674 DOI: 10.1093/jimb/kuab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023]
Abstract
Probiotics were defined as microbial strains that confer health benefits to their consumers. The concept has evolved during the last twenty years, and today metabolites produced by the strains, known as postbiotics, and even dead cells, known as paraprobiotics are closely associated to them. The isolation of commensal strains from human microbiome has led to the development of next generation probiotics. This review aims to present an overview of the developments in the area of cancer prevention and treatment, intimately related to advances in the knowledge of the microbiome role in its genesis and therapy. Strain identification and characterization, production processes, delivery strategies and clinical evaluation are crucial to translate results into the market with solid scientific support. Examples of recent tools in isolation, strain typification, quality control and development of new probiotic strains are described. Probiotics market and regulation were originally developed in the food sector, but these new strategies will impact the pharmaceutical and health sectors, requiring new considerations in regulatory frameworks.
Collapse
Affiliation(s)
- Alejandra Mejía Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Insituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, México
| | - Vianey Anahi Salas Villagrán
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Alaide Jiménez Serna
- Centro de Investigación y Capacitación en Gastronomía, Universidad del Claustro de Sor Juana, 06080 Ciudad de México, México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| |
Collapse
|
9
|
Wang L, Qin X, Liang J, Ge P. Induction of Pyroptosis: A Promising Strategy for Cancer Treatment. Front Oncol 2021; 11:635774. [PMID: 33718226 PMCID: PMC7953901 DOI: 10.3389/fonc.2021.635774] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis, a lytic pro-inflammatory type of programmed cell death, has been widely studied in diverse inflammatory disease models. Membrane perforation and cell swelling induced by cleaved gasdermin family members is the main characteristic of pyroptosis. Emerging evidence has revealed a complicated relationship between pyroptosis and cancer. On the one hand, as inflammatory cell death, pyroptosis provides a comfortable environment for tumor proliferation. On the other hand, excessive activation of pyroptosis can inhibit the development of tumor cells. In this review, we first summarized the latest progress about the molecular mechanism of pyroptosis. Then, members from gasdermin family, the central molecules of pyroptosis which formed pores on the cell membrane, were highlighted. In the second part of this review, we summarized drugs that induced pyroptosis in different tumors and their concrete mechanisms based on recent literature reports. In the final section, we discussed several hotspots in pyroptosis and cancer therapy, which will point out the direction of sequent research. In brief, inducing pyroptosis in cancer cells is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiaowei Qin
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianmin Liang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
10
|
Hong JT, Lee MJ, Yoon SJ, Shin SP, Bang CS, Baik GH, Kim DJ, Youn GS, Shin MJ, Ham YL, Suk KT, Kim BS. Effect of Korea red ginseng on nonalcoholic fatty liver disease: an association of gut microbiota with liver function. J Ginseng Res 2020; 45:316-324. [PMID: 33841012 PMCID: PMC8020261 DOI: 10.1016/j.jgr.2020.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 07/10/2020] [Indexed: 12/28/2022] Open
Abstract
Background Korea Red Ginseng (KRG) has been used as remedies with hepato-protective effects in liver-related condition. Microbiota related gut-liver axis plays key roles in the pathogenesis of chronic liver disease. We evaluated the effect of KRG on gut-liver axis in patients with nonalcoholic statohepatitis by the modulation of gut-microbiota. Methods A total of 94 patients (KRG: 45 and placebo: 49) were prospectively randomized to receive KRG (2,000 mg/day, ginsenoside Rg1+Rb1+Rg3 4.5mg/g) or placebo during 30 days. Liver function test, cytokeraton 18, and fatigue score were measured. Gut microbiota was analyzed by MiSeq systems based on 16S rRNA genes. Results In KRG group, the mean levels (before vs. after) of aspartate aminotransferase (53 ± 19 vs. 45 ± 23 IU/L), alanine aminotransferase (75 ± 40 vs. 64 ± 39 IU/L) and fatigue score (33 ± 13 vs. 26 ± 13) were improved (p < 0.05). In placebo group, only fatigue score (34 ± 13 vs. 31 ± 15) was ameliorated (p < 0.05). The changes of phyla were not statistically significant on both groups. In KRG group, increased abundance of Lactobacillus was related with improved alanine aminotransferase level and increased abundance of Clostridium and Intestinibacter was associated with no improvement after KRG supplementation. In placebo group, increased abundance of Lachnospiraceae could be related with aggravation of liver enzyme (p < 0.05). Conclusion KRG effectively improved liver enzymes and fatigue score by modulating gut-microbiota in patients with fatty liver disease. Further studies are needed to understand the mechanism of improvement of nonalcoholic steatohepatitis. ClnicalTrials.gov NCT03945123 (www.ClinicalTrials.gov).
Collapse
Affiliation(s)
- Ji Taek Hong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min-Jung Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seok Pyo Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Chang Seok Bang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gwang Ho Baik
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jaecheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|