1
|
Yang H, Yao Z, Yang K, Wang C, Li M, Zhang Y, Yan J, Lv R, Wang Y, Huang A, Zhang D, Li W, Wu Y, Miao Z. Synthesis and Antibacterial Evaluation of Novel Psoralen Derivatives against Methicillin-Resistant Staphylococcus aureus (MRSA). Chem Biodivers 2024; 21:e202302048. [PMID: 38263380 DOI: 10.1002/cbdv.202302048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Today, the bacterial infections caused by multidrug-resistant pathogens seriously threaten human health. Thereby, there is an urgent need to discover antibacterial drugs with novel mechanism. Here, novel psoralen derivatives had been designed and synthesized by a scaffold hopping strategy. Among these targeted twenty-five compounds, compound ZM631 showed the best antibacterial activity against methicillin-resistant S. aureus (MRSA) with the low MIC of 1 μg/mL which is 2-fold more active than that of the positive drug gepotidacin. Molecular docking study revealed that compound ZM631 fitted well in the active pockets of bacterial S. aureus DNA gyrase and formed a key hydrogen bond binding with the residue ASP-1083. These findings demonstrated that the psoralen scaffold could serve as an antibacterial lead compound for further drug development against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Hang Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Zheng Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Keli Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Chuanhao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Road, Nanjing, 210094, the People's Republic of China
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, the People's Republic of China
| | - Mochenxuan Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, the People's Republic of China
| | - Yanming Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Jianyu Yan
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Rongxue Lv
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Yongchuang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| | - Anhua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Daozuan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Wei Li
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, the People's Republic of China
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, The People's Republic of China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, the People's Republic of China
| |
Collapse
|
2
|
Loy CA, Trader DJ. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024; 29:3356. [PMID: 39064934 PMCID: PMC11279888 DOI: 10.3390/molecules29143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Protein homeostasis is a tightly conserved process that is regulated through the ubiquitin proteasome system (UPS) in a ubiquitin-independent or ubiquitin-dependent manner. Over the past two decades, the proteasome has become an excellent therapeutic target through inhibition of the catalytic core particle, inhibition of subunits responsible for recognizing and binding ubiquitinated proteins, and more recently, through targeted protein degradation using proteolysis targeting chimeras (PROTACs). The majority of the developed inhibitors of the proteasome's core particle rely on gaining selectivity through binding interactions within the unprimed substrate channel. Although this has allowed for selective inhibitors and chemical probes to be generated for the different proteasome isoforms, much remains unknown about the interactions that could be harnessed within the primed substrate channel to increase potency or selectivity. Herein, we discuss small molecules that interact with the primed substrate pocket and how their differences may give rise to altered activity. Taking advantage of additional interactions with the primed substrate pocket of the proteasome could allow for the generation of improved chemical tools for perturbing or monitoring proteasome activity.
Collapse
Affiliation(s)
| | - Darci J. Trader
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92617, USA;
| |
Collapse
|
3
|
Sharma D, Gautam S, Srivastava N, Khan AM, Bisht D. Comparative Proteomic Analysis of Capsule Proteins in Aminoglycoside-Resistant and Sensitive Mycobacterium tuberculosis Clinical Isolates: Unraveling Potential Drug Targets. Int J Mycobacteriol 2024; 13:197-205. [PMID: 38916392 DOI: 10.4103/ijmy.ijmy_47_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Tuberculosis (TB), a global infectious threat, has seen a concerning rise in aminoglycoside-resistant Mycobacterium tuberculosis (M.tb) strains. The potential role of capsule proteins remains largely unexplored. This layer acts as the primary barrier for tubercle bacilli, attempting to infiltrate host cells and subsequent disease development. METHODS The study aims to bridge this gap by investigating the differentially expressed capsule proteins in aminoglycoside-resistant M.tb clinical isolates compared with drug-sensitive isolates employing two-dimensional gel electrophoresis, mass spectrometry, and bioinformatic approaches. RESULTS We identified eight proteins that exhibited significant upregulation in aminoglycoside-resistant isolates. Protein Rv3029c and Rv2110c were associated with intermediary metabolism and respiration; Rv2462c with cell wall and cell processes; Rv3804c with lipid metabolism; Rv2416c and Rv2623 with virulence and detoxification/adaptation; Rv0020c with regulatory functions; and Rv0639 with information pathways. Notably, the Group-based Prediction System for Prokaryotic Ubiquitin-like Protein (GPS-PUP) algorithm identified potential pupylation sites within all proteins except Rv3804c. Interactome analysis using the STRING 12.0 database revealed potential interactive partners for these proteins, suggesting their involvement in aminoglycoside resistance. Molecular docking studies revealed suitable binding between amikacin and kanamycin drugs with Rv2462c, Rv3804c, and Rv2623 proteins. CONCLUSION As a result, our findings illustrate the multifaceted nature of aminoglycoside resistance in M.tb and the importance of understanding how capsule proteins play a role in counteracting drug efficacy. Identifying the role of these proteins in drug resistance is crucial for developing more effective treatments and diagnostics for TB.
Collapse
Affiliation(s)
- Devesh Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Sakshi Gautam
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Nalini Srivastava
- School of Studies in Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Abdul Mabood Khan
- Division of Clinical Trails and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Deepa Bisht
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| |
Collapse
|
4
|
Amandy FV, Neri GLL, Manzano JAH, Go AD, Macabeo APG. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review. Curr Drug Targets 2024; 25:620-634. [PMID: 38859782 DOI: 10.2174/0113894501306302240526160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
The increasing demand for novel antitubercular agents has been the main 'force' of many TB research efforts due to the uncontrolled growing number of drug-resistant strains of M. tuberculosis in the clinical setting. Many strategies have been employed to address the drug-resistant issue, including a trend that is gaining attention, which is the design and discovery of Mtb inhibitors that are either dual- or multitargeting. The multiple-target design concept is not new in medicinal chemistry. With a growing number of newly discovered Mtb proteins, numerous targets are now available for developing new biochemical/cell-based assays and computer-aided drug design (CADD) protocols. To describe the achievements and overarching picture of this field in anti- infective drug discovery, we provide in this review small molecules that exhibit profound inhibitory activity against the tubercle bacilli and are identified to trace two or more Mtb targets. This review also presents emerging design methodologies for developing new anti-TB agents, particularly tailored to structure-based CADD.
Collapse
Affiliation(s)
- Franklin V Amandy
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Gabriel L L Neri
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Joe A H Manzano
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Adrian D Go
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Department of Chemistry, College of Science, Adamson University, San Marcelino St., Ermita, Manila 1000, Philippines
| | - Allan P G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| |
Collapse
|
5
|
Zeng G, Yu Q, Zhuang R, Zhu H, Shao J, Xi J, Zhang J. Recent Advances and Future Perspectives of Noncompetitive Proteasome Inhibitors. Bioorg Chem 2023; 135:106507. [PMID: 37030106 DOI: 10.1016/j.bioorg.2023.106507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Collapse
|
6
|
Jia Y, Wang G, Yan W, Kong B, Xu Y, Wang C, Tang D, Xi X. Psoralen suppresses the phosphorylation of amyloid precursor protein (APP) to inhibit myelosuppression. Biomed Pharmacother 2022; 153:113381. [DOI: 10.1016/j.biopha.2022.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/26/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
|
7
|
Skarga VV, Matrosov AA, Nichugovskiy AI, Negrebetsky VV, Maslov MA, Boldyrev IA, Malakhov MV. pH-Dependent Photoinduced Interconversion of Furocoumaric and Furocoumarinic Acids. Molecules 2021; 26:2800. [PMID: 34068591 PMCID: PMC8126128 DOI: 10.3390/molecules26092800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Photo-controlled or photo-regulated molecules, especially biologically active and operating in physiological conditions, are in steady demand. Herein, furocoumaric and furocoumarinic acids being (Z/E)-isomers relative to each other were obtained in two stages starting from psoralen: the alkaline solvolysis of psoralen led to furocoumaric acid, which was further Z → E photoisomerized (365 nm) to furocoumarinic acid. The kinetics of Z → E photoisomerization was monitored by HPLC and UV-vis spectrophotometry. Photophysical characteristics in the aqueous phase for both acids, as well as the reversibility of (Z/E) photoisomerization process, were also assessed. Furocoumarinic acid was found to be visibly fluorescent at pH 2.0-12.0, with the maxima of fluorescence emission spectra being pH-dependent. The reverse E → Z photoisomerization predicted by quantum chemistry calculations as energetically favorable for the monoanionic form of furocoumarinic acid was proved in the experiment while being complicated by pyrone ring closure back to psoralen in acidic and neutral conditions. The preparative synthesis of furocoumarinic acid outlined in this work is particularly valuable in view of a wide range of pharmacological effects previously predicted for this compound.
Collapse
Affiliation(s)
- Vladislav V. Skarga
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 1 Ostrovityanov Str., 117997 Moscow, Russia; (V.V.S.); (A.A.M.); (V.V.N.); (I.A.B.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.I.N.); (M.A.M.)
| | - Anton A. Matrosov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 1 Ostrovityanov Str., 117997 Moscow, Russia; (V.V.S.); (A.A.M.); (V.V.N.); (I.A.B.)
| | - Artemiy I. Nichugovskiy
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.I.N.); (M.A.M.)
| | - Vadim V. Negrebetsky
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 1 Ostrovityanov Str., 117997 Moscow, Russia; (V.V.S.); (A.A.M.); (V.V.N.); (I.A.B.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 86 Vernadsky Ave., 119571 Moscow, Russia; (A.I.N.); (M.A.M.)
| | - Ivan A. Boldyrev
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 1 Ostrovityanov Str., 117997 Moscow, Russia; (V.V.S.); (A.A.M.); (V.V.N.); (I.A.B.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Mikhail V. Malakhov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 1 Ostrovityanov Str., 117997 Moscow, Russia; (V.V.S.); (A.A.M.); (V.V.N.); (I.A.B.)
| |
Collapse
|
8
|
Identification of New Mycobacterium tuberculosis Proteasome Inhibitors Using a Knowledge-Based Computational Screening Approach. Molecules 2021; 26:molecules26082326. [PMID: 33923734 PMCID: PMC8074214 DOI: 10.3390/molecules26082326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a deadly tuberculosis (TB)-causing pathogen. The proteasome is vital to the survival of Mtb and is therefore validated as a potential target for anti-TB therapy. Mtb resistance to existing antibacterial agents has enhanced drastically, becoming a worldwide health issue. Therefore, new potential therapeutic agents need to be developed that can overcome the complications of TB. With this purpose, in the present study, 224,205 natural compounds from the ZINC database have been screened against the catalytic site of Mtb proteasome by the computational approach. The best scoring hits, ZINC3875469, ZINC4076131, and ZINC1883067, demonstrated robust interaction with Mtb proteasome with binding energy values of −7.19, −7.95, and −7.21 kcal/mol for the monomer (K-chain) and −8.05, −9.10, and −7.07 kcal/mol for the dimer (both K and L chains) of the beta subunit, which is relatively higher than that of reference compound HT1171 (−5.83 kcal/mol (monomer) and −5.97 kcal/mol (dimer)). In-depth molecular docking of top-scoring compounds with Mtb proteasome reveals that amino acid residues Thr1, Arg19, Ser20, Thr21, Gln22, Gly23, Asn24, Lys33, Gly47, Asp124, Ala126, Trp129, and Ala180 are crucial in binding. Furthermore, a molecular dynamics study showed steady-state interaction of hit compounds with Mtb proteasome. Computational prediction of physicochemical property assessment showed that these hits are non-toxic and possess good drug-likeness properties. This study proposed that these compounds could be utilized as potential inhibitors of Mtb proteasome to combat TB infection. However, there is a need for further bench work experiments for their validation as inhibitors of Mtb proteasome.
Collapse
|