1
|
Vasylyeva H, Mironyuk I, Strilchuk M, Mayer K, Dallas L, Tryshyn V, Maliuk I, Hryhorenko M, Zhukov O, Savka K. Age dating of liquid 90Sr- 90Y sources. Appl Radiat Isot 2023; 200:110906. [PMID: 37451148 DOI: 10.1016/j.apradiso.2023.110906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
In the context of age dating of 90Sr, the selective adsorption of zirconium ions from the mixture with strontium and yttrium by adsorbents based on TiO2 with a chemically modified surface was investigated. The general features of the separation process of strontium, yttrium, and zirconium in batch conditions were determined. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze the initial and residual concentrations of the studied cations. Separation of 90Zr and 90Sr from a liquid source containing 90Sr-90Y using adsorbents based on TiO2 was performed for the first time. The ratio of 90Zr/90Sr was measured, and the age of liquid 90Sr-90Y sources was determined. In addition, we studied the age dating of 90Sr-90Y sources using a combination of liquid-scintillation counting of 90Sr and ICP-MS measurement. The results of both methods - the method of age-dating with the chemical separation of isotopes and the combination of LSC and ICP-MS analysis - agree very well and thus serve for cross-validation. Moreover, the combination of the two methods increases the confidence in the age-dating results of 90Sr-90Y sources.
Collapse
Affiliation(s)
| | - Ivan Mironyuk
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Mykola Strilchuk
- Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Klaus Mayer
- Joint Research Centre, European Commission, Karlsruhe, Germany
| | | | - Volodymyr Tryshyn
- Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor Maliuk
- Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Maryna Hryhorenko
- Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oleksandr Zhukov
- Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Khrystyna Savka
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Vasylyeva H, Mironyuk I, Strilchuk M, Maliuk I, Mykytyn I, Tryshyn V. A new way to ensure selective zirconium ion adsorption. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
This work studies the adsorption of zirconium ions by mesoporous titanium dioxide with surface arsenate groups. Experimental maximal adsorption values of zirconium ions were found to be 109.6 mg/g in neutral medium. This process depends on the interaction time, the equilibrium concentration of zirconium ions, and the acidity of the solution. Adsorption kinetics fit well into the kinetic model based on the pseudo-second-order equation (R
2 = 0.9984). Equilibrium adsorption of zirconium ions is well described by Langmuir’s adsorption theory (R
2 = 0.9856 and χ
2 = 1.307). Although zirconium ions are less actively adsorbed from a neutral medium than strontium or yttrium ions, in the 2% nitric acid only zirconium is adsorbed out of the mixture of zirconium, strontium, and yttrium. The results obtained by inductively coupled plasma mass spectrometry have shown that the investigated adsorbent selectively adsorbs zirconium ions from their mixture with strontium and yttrium in the range of solution acidity pH = 0–1. The average percentage of maximum extraction of zirconium ions is 94.3 ± 2.4%, and the highest percent of zirconium ions taken up from the mixture with strontium and yttrium is ∼98.4%. Investigated titanium dioxide selectively separate 90Zr from 90Sr with the presence of 1000-fold excess of stable 88Sr in radioactive liquid β
− source. This fact is extremely valuable for the age dating of 90Sr-containing device in nuclear forensics or the determination of 90Sr in low activity background samples.
Collapse
Affiliation(s)
- Hanna Vasylyeva
- Department of Theoretical Physics , Uzhgorod National University , 14 Universytets’ka Street, 88000 , Uzhgorod , Ukraine
| | - Ivan Mironyuk
- Department of Chemistry , Vasyl Stefanyk Precarpathian National University , 57 Shevchenko Street, 76018 , Ivano-Frankivsk , Ukraine
| | - Mykola Strilchuk
- NAS of Ukraine Institute for Nuclear Research, Laboratory of Nuclear Forensics , Kyiv , Ukraine
| | - Igor Maliuk
- NAS of Ukraine Institute for Nuclear Research, Laboratory of Nuclear Forensics , Kyiv , Ukraine
| | - Igor Mykytyn
- Department of Chemistry , Vasyl Stefanyk Precarpathian National University , 57 Shevchenko Street, 76018 , Ivano-Frankivsk , Ukraine
| | - Volodymyr Tryshyn
- NAS of Ukraine Institute for Nuclear Research, Laboratory of Nuclear Forensics , Kyiv , Ukraine
| |
Collapse
|
3
|
Matsueda M, Yanagisawa K, Koarai K, Terashima M, Fujiwara K, Abe H, Kitamura A, Takagai Y. Online Solid-Phase Extraction-Inductively Coupled Plasma-Quadrupole Mass Spectrometry with Oxygen Dynamic Reaction for Quantification of Technetium-99. ACS OMEGA 2021; 6:19281-19290. [PMID: 34337265 PMCID: PMC8320326 DOI: 10.1021/acsomega.1c02756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Quantification of pg/L levels (i.e., 0.6 mBq/L) of radioactive technetium-99 (99Tc) was achieved within 15 min in the presence of isobaric and polyatomic interference sources such as ruthenium-99 (99Ru) and molybdenum hydride (98Mo1H) at 3-11 orders of magnitude higher concentrations. Online solid-phase extraction-inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) with oxygen (O2) dynamic reaction cell (online SPE-ICP-MS-DRC) was shown to be a thorough automatic analytical system, circumventing the need for human handling. At three stepwise separations (SPE-DRC-Q mass filters), we showed that interference materials allowed the coexistence of abundance ratios of 1.5 × 10-13 and 1.1 × 10-5 for 99Tc/Mo and 99Tc/Ru, respectively. A classical mathematical correction using the natural isotope ratio of 99Ru/102Ru was used to calculate the residues of 99Ru. Using this optimized system, a detection limit (DL; 3σ) of 99Tc was 9.3 pg/L (= 5.9 mBq/L) for a 50 mL injection and sequential measurements were undertaken at a cycle of 24 min/sample. For the measurement of a lower concentration of 99Tc, an AG1-X8 anion-exchange column was used to study 20 L of seawater. Its DL was approximately 1000 times greater than that of previous methods (70.0 fg/L). Thus, this method withstands coexistences of 5.8 × 10-18 and 3.5 × 10-9 for 99Tc/Mo and 99Tc/Ru, respectively. Spike and recovery tests were conducted for environmental samples; the resulting values showed good agreement with the spike applied.
Collapse
Affiliation(s)
- Makoto Matsueda
- Faculty
of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
- Collaborative
Laboratories for Advanced Decommissioning Science, Japan Atomic Energy
Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan
| | - Kayo Yanagisawa
- Faculty
of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
| | - Kazuma Koarai
- Collaborative
Laboratories for Advanced Decommissioning Science, Japan Atomic Energy
Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan
| | - Motoki Terashima
- Collaborative
Laboratories for Advanced Decommissioning Science, Japan Atomic Energy
Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan
| | - Kenso Fujiwara
- Collaborative
Laboratories for Advanced Decommissioning Science, Japan Atomic Energy
Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan
| | - Hironobu Abe
- Collaborative
Laboratories for Advanced Decommissioning Science, Japan Atomic Energy
Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan
| | - Akihiro Kitamura
- Collaborative
Laboratories for Advanced Decommissioning Science, Japan Atomic Energy
Agency, 10-2 Fukasaku, Miharu-machi, Tamura-gun, Fukushima 963-7700, Japan
| | - Yoshitaka Takagai
- Faculty
of Symbiotic Systems Science, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
- Institute
of Environmental Radioactivity, Fukushima
University, 1 Kanayagawa, Fukushima 960-1296, Japan
| |
Collapse
|
4
|
Abstract
A brief overview of articles published in this Special Issue of Molecules titled “Modern Flow Analysis” is provided. In addition to cross-sectional and methodological works, there are some reports on new technical and instrumental achievements. It has been shown that all these papers create a good picture of contemporary flow analysis, revealing the most current trends and problems in this branch of flow chemistry.
Collapse
|