1
|
Haak MR, Indraratne SP. Soil amendments for vanadium remediation: a review of remediation of vanadium in soil through chemical stabilization and bioremediation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4107-4125. [PMID: 36773122 DOI: 10.1007/s10653-023-01498-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Immobilization of vanadium (V) in soils is one option to prevent groundwater contamination and plant uptake. Phytoremediation, microbial remediation, and chemical stabilization using soil amendments are among the leading environmentally friendly and economically feasible techniques in V remediation. Soil amendments were used to reduce V mobility by immobilizing it in the soil matrix through chemical stabilization, while bioremediation methods such as phytoremediation and microbial remediation were used to remove V from contaminated soils. Vanadium exists in several species and among them V5+ species are the most prevalent, toxic, and soluble form and present as a negatively charged ion (H2VO4- and HVO42-) in oxic soils above pH 4. Amendments used for chemical stabilization can change the physicochemical properties enhancing immobility of V in soil. The pH of the soil environment, point of zero charge of the colloid surface, and redox conditions are some of the most important factors that determine the efficiency of the amendment. Commonly used amendments for chemical stabilization include biochar, zeolites, organic acids, various clay minerals and oxides of elements such as iron, titanium, manganese, and aluminum. For bioremediation, chelating agents and microbial communities are used to mobilize V to enhance phyto-or microbial-extraction procedures. The objectives of this review were to discuss remediation methods of V while considering V speciation and toxicity in soil, and soil amendment application for V removal from soil. The information compiled in this review can guide further research on soil amendments for optimal V remediation in largely contaminated industrial sites.
Collapse
Affiliation(s)
- Melissa Rae Haak
- Department of Environmental Studies and Sciences, Faculty of Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Srimathie P Indraratne
- Department of Environmental Studies and Sciences, Faculty of Science, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
2
|
Lin R, Li J, Jing X, Guo M, Ren G, Qin H, Yao Z, Wan Y, Song W, Zeng H, Yang F, Zhao D, Hu K. Enhanced selective separation of vanadium(V) and chromium(VI) using the CeO 2 nanorod containing oxygen vacancies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27415-1. [PMID: 37155091 DOI: 10.1007/s11356-023-27415-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Adsorption of vanadium from wastewater defends the environment from toxic ions and contributes to recover the valuable metal. However, it is still challenging for the separation of vanadium (V5+) and chromium (Cr6+) because of their similar properties. Herein, a kind of CeO2 nanorod containing oxygen vacancies is facilely synthesized which displays ultra-high selectivity of V5+ against various competitive ions (i.e., Fe, Mn, Cr, Ni, Cu, Zn, Ga, Cd, Ba, Pb, Mg, Be, and Co). Moreover, a large separation factor (SFV/Cr) of 114,169.14 for the selectivity of V5+ is achieved at the Cr6+/V5+ ratio of 80 with the trace amount of V5+ (~ 1 mg/L). The results show that the process of V5+ uptake is the monolayer homogeneous adsorption and is controlled by external and intraparticle diffusions. In addition, it also shows that V5+ is reduced to V3+ and V4+ and then formation of V-O complexation. This work offers a novel CeO2 nanorod material for efficient separation of V5+ and Cr6+ and also clarifies the mechanism of the V5+ adsorption on the CeO2 surface.
Collapse
Affiliation(s)
- Ruixi Lin
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Jiarong Li
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xuequan Jing
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Meina Guo
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Guoqing Ren
- Jiangxi ECO-ADVANCE Technology Co., Ltd, Ganzhou, 341000, People's Republic of China
| | - Haonan Qin
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Zhangwei Yao
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Yinhua Wan
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou, 341000, People's Republic of China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Weijie Song
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou, 341000, People's Republic of China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Huifeng Zeng
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Feifei Yang
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Da Zhao
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China
| | - Kang Hu
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, People's Republic of China.
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
3
|
Abstract
Water pollution deteriorates ecosystems and is a great threat to the environment. The environmental benefits of wastewater treatment are extremely important to minimize pollutants. Here, the oxalic acid used as reductant was used to treat the wastewater which contained high concentration of vanadium (V). Nearly 100% of vanadium was efficiently reduced at selected reaction conditions. The optimization results simulated by response surface methodology (RSM) analysis indicated the parameters all had significant effects on the reduction process, and followed the order: dosage of oxalic acid > reaction temperature > reaction time > initial pH of vanadium-containing wastewater. The reduction behavior analysis indicated that the pseudo first-order kinetics model could describe well the reduction process with Ea = 42.14 kJ/mol, and was described by the equation as followed: −LnC=K0·[pH]0.1016·[n(O)/n(V)]2.4569·[T]2.2588·exp(−42.14/T)·t.
Collapse
|
4
|
Mondal H, Karmakar M, Ghosh NN, Maiti DK, Chattopadhyay PK, Singha NR. One-pot synthesis of sodium alginate-grafted-terpolymer hydrogel for As(III) and V(V) removal: In situ anchored comonomer and DFT studies on structures. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112932. [PMID: 34130137 DOI: 10.1016/j.jenvman.2021.112932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, an optimum sodium alginate (NaAlg)-grafted-[sodium 2-methylenesuccinate-co-sodium 2-((2-(isobutyryloxy)ethoxy)methyl)succinate-co-ethylene glycol methacrylate, i.e., SMS-co-SIBEMS-co-EGMA, i.e., P1], i.e., P2, was selected among twelve hydrogels synthesized by employing variable amounts of synthesis parameters through a facile polymerization of SMS and EGMA monomers. In P1 and P2, SIBEMS third comonomer was strategically anchored in situ. The formation of terpolymer, i.e., P1, rather than generally expected copolymer, i.e., SMS-co-EGMA/ CoP1, was explored via closeness of experimental and simulated excitation energies of P1 and CoP1, measured by using density functional theory (DFT). The grafting of NaAlg into synthetic P1 elevated swelling, crosslink density (CD), network stability, reusability, and adsorption capacity (AC) of semisynthetic hydrogel, i.e., P2. The reusable P2 presenting optimum result among swelling, CD, and mean molar mass was chosen selectively for removals of As(III) and V(V). The structures of P1, P2, and adsorbed P2, i.e., As(III)-P2 and V(V)-P2; NaAlg-grafting; in situ anchored SIBEMS comonomer; reusability; thermostability; and surface properties were explored through XPS-NMR-FTIR-UV-vis, DFT, TG, DLS, XRD, SEM, pHPZC, and network and thermodynamic energies. The ACs of 0.025 g P2 for As(III) and V(V) were 112.24 and 88.89 mg g-1, respectively, at 308 K and within 5-100 mg L-1. The ACs reduced to 67.26, 75.49, 71.42, and 98.25 mg g-1 for As(III) and 40.25, 50.49, 45.37, and 67.88 mg g-1 for V(V) in the presence of Mn(II), Cu(II), Ni(II), and Zn(II), respectively.
Collapse
Affiliation(s)
- Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur 732103, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
5
|
Bellenberg S, Turner S, Seidel L, van Wyk N, Zhang R, Sachpazidou V, Embile RF, Walder I, Leiviskä T, Dopson M. Towards Bioleaching of a Vanadium Containing Magnetite for Metal Recovery. Front Microbiol 2021; 12:693615. [PMID: 34276626 PMCID: PMC8278310 DOI: 10.3389/fmicb.2021.693615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Vanadium - a transition metal - is found in the ferrous-ferric mineral, magnetite. Vanadium has many industrial applications, such as in the production of high-strength low-alloy steels, and its increasing global industrial consumption requires new primary sources. Bioleaching is a biotechnological process for microbially catalyzed dissolution of minerals and wastes for metal recovery such as biogenic organic acid dissolution of bauxite residues. In this study, 16S rRNA gene amplicon sequencing was used to identify microorganisms in Nordic mining environments influenced by vanadium containing sources. These data identified gene sequences that aligned to the Gluconobacter genus that produce gluconic acid. Several strategies for magnetite dissolution were tested including oxidative and reductive bioleaching by acidophilic microbes along with dissimilatory reduction by Shewanella spp. that did not yield significant metal release. In addition, abiotic dissolution of the magnetite was tested with gluconic and oxalic acids, and yielded 3.99 and 81.31% iron release as a proxy for vanadium release, respectively. As a proof of principle, leaching via gluconic acid production by Gluconobacter oxydans resulted in a maximum yield of 9.8% of the available iron and 3.3% of the vanadium. Addition of an increased concentration of glucose as electron donor for gluconic acid production alone, or in combination with calcium carbonate to buffer the pH, increased the rate of iron dissolution and final vanadium recoveries. These data suggest a strategy of biogenic organic acid mediated vanadium recovery from magnetite and point the way to testing additional microbial species to optimize the recovery.
Collapse
Affiliation(s)
- Sören Bellenberg
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Laura Seidel
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Nathan van Wyk
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Ruichi Zhang
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Varvara Sachpazidou
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | | | - Ingar Walder
- Kjeøy Research & Education Center, Vestbygd, Norway
| | - Tiina Leiviskä
- Chemical Process Engineering, University of Oulu, Oulu, Finland
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Mondal H, Karmakar M, Chattopadhyay PK, Halder A, Singha NR. Scale-up one-pot synthesis of waste collagen and apple pomace pectin incorporated pentapolymer biocomposites: Roles of waste collagen for elevations of properties and unary/ ternary removals of Ti(IV), As(V), and V(V). JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124873. [PMID: 33548741 DOI: 10.1016/j.jhazmat.2020.124873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Herein, hazardous solid particulate waste collagenic fibers (SWCFs) of leather industries were incorporated into apple pomace pectin (APPN)-grafted-pentapolymer, i.e., APPN-g-[sodium 2-methylidenebutanedioate(SMBD)-co-N-((3-(isopropylamino)-3-oxopropoxy) methyl) butyramide (CM1)-co-N-(hydroxymethyl)prop-2-enamide (NHMPE)-co-N-(hydroxymethyl)-4-(N-isopropylbutyramido)butanamide (CM2)-co-N-(propan-2-yl)prop-2-enamide NPYPE)/ PENP1], i.e., APPN-g-PENP1/ PENP2, prepared via one-pot facile polymerization of APPN and synthetic monomers, i.e., SMBD, NHMPE, and NPYPE, in aqueous medium, to fabricate an optimum multifunctional hybrid biocomposite adsorbent/ HCOM3. In PENP1, PENP2, and HCOM3, fourth/ CM1 and fifth/ CM2 multifunctional comonomers were anchored in situ. The structures of PENP1, PENP2, HCOM3, CM1, CM2, and metal-ion adsorbed HCOM3; APPN-grafting; SWCF incorporation; and surface properties were analyzed through NMR, XPS, FTIR, XRD, and SEM. The elevated adsorption efficiencies (AEs), reusability, thermostability, swelling, network durability, and crosslink density of HCOM3 were attributed to variable functionalities of SWCF/ APPN, explored by DLS and TGA, swelling, network, and thermodynamic parameters. Compared to SWCF, APPN, PENP1, and PENP2, the elevated AEs and reusability compelled HCOM3 as more suitable for scalable waste management. The maximum AEs, i.e., 171.79, 180.47, and 177.27 mg g-1, for Ti(IV), As(V), and V(V) at pHop = 7.0, 3.0, and 5.0, respectively, within 5-100 mg L-1 and at 298 K for 25 mg HCOM3 deteriorated during ternary adsorption by the antagonistic effects.
Collapse
Affiliation(s)
- Himarati Mondal
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Aparna Halder
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|