1
|
Buziková M, Zhukouskaya H, Tomšík E, Vetrík M, Kučka J, Hrubý M, Kotek J. Catalytic Hydrolysis of Paraoxon by Immobilized Copper(II) Complexes of 1,4,7-Triazacyclononane Derivatives. Polymers (Basel) 2024; 16:2911. [PMID: 39458739 PMCID: PMC11510994 DOI: 10.3390/polym16202911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Organophosphate neuroactive agents represent severe security threats in various scenarios, including military conflicts, terrorist activities and industrial accidents. Addressing these threats necessitates effective protective measures, with a focus on decontamination strategies. Adsorbents such as bentonite have been explored as a preliminary method for chemical warfare agent immobilization, albeit lacking chemical destruction capabilities. Chemical decontamination, on the other hand, involves converting these agents into non-toxic or less toxic forms. In this study, we investigated the hydrolytic activity of a Cu(II) complex, previously studied for phosphate ester hydrolysis, as a potential agent for chemical warfare decontamination. Specifically, we focused on a ligand featuring a thiophene anchor bound through an aliphatic spacer, which exhibited high hydrolytic activity in its Cu(II) complex form in our previous studies. Paraoxon, an efficient insecticide, was selected as a model substrate for hydrolytic studies due to its structural resemblance to specific chemical warfare agents and due to the presence of a chromogenic 4-nitrophenolate moiety. Our findings clearly show the hydrolytic activity of the studied Cu(II) complexes. Additionally, we demonstrate the immobilization of the studied complex onto a solid substrate of Amberlite XAD4 via copolymerization of its thiophene side group with dithiophene. The hydrolytic activity of the resultant material towards paraoxon was studied, indicating its potential utilization in organophosphate neuroactive agent decontamination under mild conditions and the key importance of surface adsorption of paraoxon on the polymer surface.
Collapse
Affiliation(s)
- Michaela Buziková
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Hanna Zhukouskaya
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Elena Tomšík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Miroslav Vetrík
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Jan Kučka
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 06 Prague, Czech Republic (E.T.); (J.K.); (M.H.)
| | - Jan Kotek
- Department of Inorganic Chemistry, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| |
Collapse
|
2
|
Saifina LF, Abdalla M, Gubaidullina LM, Zueva IV, Eltayb WA, El-Arabey AA, Kharlamova AD, Lenina OA, Semenov VE, Petrov KA. Novel slow-binding reversible acetylcholinesterase inhibitors based on uracil moieties for possible treatment of myasthenia gravis and protection from organophosphate poisoning. Eur J Med Chem 2023; 246:114949. [PMID: 36462442 DOI: 10.1016/j.ejmech.2022.114949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
A series of new compounds in which uracil and 3,6-dimethyluracil moieties are bridged with different spacers were prepared and evaluated in vitro for the acetyl- and butyrylcholinesterase (AChE and BChE) inhibitory activities. These bisuracils are shown to be very effective inhibitors of AChE, inhibiting the enzyme at nano- and lower molar concentrations with extremely high selectivity for AChE vs. BChE. Kinetic analysis showed that the lead compound 2h acts as a slow-binding inhibitor of AChE and possess a long drug-target residence time (τ = 1/koff = 18.6 ± 7.5 min). Moreover, compound 2h ameliorated muscle weakness in myasthenia gravis rat model with a lower effective dose and longer lasting effect than pyridostigmine bromide. Besides, it was shown that compound 2h has an effect of increasing efficiency of antidotal therapy as a pretreatment for poisoning by organophosphates.
Collapse
Affiliation(s)
- Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
| | - Liliya M Gubaidullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi, 11111, Sudan
| | - Amr Ahmed El-Arabey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt
| | - Alexandra D Kharlamova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia.
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, Kazan, 420088, Russia; Kazan Federal University, 18 Kremlyovskaya str, Kazan, 420008, Russia
| |
Collapse
|
3
|
Transdermal Delivery of 2-PAM as a Tool to Increase the Effectiveness of Traditional Treatment of Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms232314992. [PMID: 36499322 PMCID: PMC9735786 DOI: 10.3390/ijms232314992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
For the first time, the efficacy of post-exposure treatment of organophosphate (OP) poisoning was increased by transdermal delivery of acetylcholinesterase (AChE) reactivator pyridine-2-aldoxime methochloride (2-PAM) as a preventive countermeasure. By selecting the optimal ratio of components, classical transfersomes (based on soybean phosphatidylcholine and Tween 20) and modified transfersomes (based on soybean phosphatidylcholine, Tween 20 and pyrrolidinium cationic surfactants with different hydrocarbon tail lengths) were obtained for 2-PAM encapsulation. Transfersomes modified with tetradecylpyrrolidinium bromide showed the best results in encapsulation efficiency and sustained release of 2-PAM from vesicles. Using Franz cells, it was found that the incorporation of surfactants into PC liposomes results in a more prolonged release of 2-PAM through the rat skin. Transfersomes containing 2-PAM, after exhaustive physical and chemical characterization, were embedded in a gel based on Carbopol® 940. A significantly high degree of erythrocyte AChE reactivation (23 ± 7%) was shown for 2-PAM in unmodified transfersomes in vivo. Preliminary transdermal administration of 2-PAM 24 h before emergency post-exposure treatment of OP poisoning leads to an increase in the survival rate of rats from 55% to 90%.
Collapse
|
4
|
Yu G, Li Y, Jian T, Shi L, Cui S, Zhao L, Jian X, Kan B. Clinical Analysis of Acute Organophosphorus Pesticide Poisoning and Successful Cardiopulmonary Resuscitation: A Case Series. Front Public Health 2022; 10:866376. [PMID: 35712275 PMCID: PMC9196733 DOI: 10.3389/fpubh.2022.866376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Acute organophosphorus pesticide poisoning (AOPP) with cardiac arrest has an extremely high mortality rate, and corresponding therapeutic strategies have rarely been reported. Therefore, this study aimed to explore the prognostic factors and effective treatments of AOPP-related cardiac arrest. This retrospective study was conducted in our department in the years 2018–2021. We conducted a descriptive analysis of the clinical manifestations, rescue strategies, and prognosis of patients with AOPP who had experienced cardiac arrest and successful cardiopulmonary resuscitation. This study included six cases of patients with AOPP in addition to cardiac arrest; in four cases, cardiac arrest occurred <12 h after ingestion, and in two, cardiac arrest occurred more than 48 h after ingestion. Five patients had not undergone hemoperfusion therapy before cardiac arrest, and all six were treated with atropine during cardiopulmonary resuscitation and subsequent pralidoxine. Four patients recovered and were discharged from the hospital, one died in our department, and one was transferred to a local hospital and died there 2 h later. The last two patients had severe pancreatic injuries and disseminated intravascular coagulation. This, along with their death, might have been related to their prognosis. Cardiac arrest can occur in patients with severe AOPP for whom antidote administration was insufficient or not timely. Application of atropine and pralidoxine in a timely manner after cardiac arrest following AOPP is the key to successful treatment. This study provides useful guidelines for the treatment of similar cases in the future.
Collapse
Affiliation(s)
- Guangcai Yu
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yaqian Li
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Department of Digestive Internal Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Longke Shi
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liwen Zhao
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiangdong Jian
| | - Baotian Kan
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Department of Geriatric Medicine, School of Nursing, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Baotian Kan
| |
Collapse
|
5
|
Maksimović ŽM, Škrbić R, Stojiljković MP. Dose-Dependency of Toxic Signs and Outcomes of Paraoxon Poisoning in Rats. ACTA MEDICA (HRADEC KRALOVE) 2022; 65:8-17. [PMID: 35793503 DOI: 10.14712/18059694.2022.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organophosphorus compounds induce irreversible inhibition of acetylcholinesterase, which then produces clinically manifested muscarinic, nicotinic and central effects. The aim of the study was to analyse the clinical signs of acute paraoxon poisoning in rats and to determine the relationship between the intensity of signs of poisoning and the dose of paraoxon and/or the outcome of poisoning in rats. Animals were treated with either saline or atropine (10 mg/kg intramuscularly). The median subcutaneous lethal dose (LD50) of paraoxon was 0.33 mg/kg and protective ratio of atropine was 2.73. The presence and intensity of signs of poisoning in rats (dyspnoea, lacrimation, exophthalmos, fasciculations, tremor, ataxia, seizures, piloerection, stereotypic movements) were observed and recorded for 4 h after the injection of paraoxon. Intensity of these toxic phenomena was evaluated as: 0 - absent, 1 - mild/moderate, 2 - severe. Fasciculations, seizures and tremor were more intense at higher doses of paraoxon and in non-survivors. In unprotected rats piloerection occurred more often and was more intense at higher doses of paraoxon as well as in non-survivors. In atropine-protected rats, piloerection did not correlate with paraoxon dose or outcome of poisoning. The intensity of fasciculations and seizures were very strong prognostic parameters of the poisoning severity.
Collapse
Affiliation(s)
- Žana M Maksimović
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina.
| | - Ranko Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| | - Miloš P Stojiljković
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, the Republic of Srpska, Bosnia and Herzegovina
| |
Collapse
|
6
|
Lorke DE, Nurulain SM, Hasan MY, Kuča K, Petroianu GA. Experimental and Established Oximes as Pretreatment before Acute Exposure to Azinphos-Methyl. Int J Mol Sci 2021; 22:3072. [PMID: 33802843 PMCID: PMC8002820 DOI: 10.3390/ijms22063072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022] Open
Abstract
Poisoning with organophosphorus compounds (OPCs) represents an ongoing threat to civilians and rescue personal. We have previously shown that oximes, when administered prophylactically before exposure to the OPC paraoxon, are able to protect from its toxic effects. In the present study, we have assessed to what degree experimental (K-27; K-48; K-53; K-74; K-75) or established oximes (pralidoxime, obidoxime), when given as pretreatment at an equitoxic dosage of 25% of LD01, are able to reduce mortality induced by the OPC azinphos-methyl. Their efficacy was compared with that of pyridostigmine, the only FDA-approved substance for such prophylaxis. Efficacy was quantified in rats by Cox analysis, calculating the relative risk of death (RR), with RR=1 for the reference group given only azinphos-methyl, but no prophylaxis. All tested compounds significantly (p ≤ 0.05) reduced azinphos-methyl-induced mortality. In addition, the efficacy of all tested experimental and established oximes except K-53 was significantly superior to the FDA-approved compound pyridostigmine. Best protection was observed for the oximes K-48 (RR = 0.20), K-27 (RR = 0.23), and obidoxime (RR = 0.21), which were significantly more efficacious than pralidoxime and pyridostigmine. The second-best group of prophylactic compounds consisted of K-74 (RR = 0.26), K-75 (RR = 0.35) and pralidoxime (RR = 0.37), which were significantly more efficacious than pyridostigmine. Pretreatment with K-53 (RR = 0.37) and pyridostigmine (RR = 0.52) was the least efficacious. Our present data, together with previous results on other OPCs, indicate that the experimental oximes K-27 and K-48 are very promising pretreatment compounds. When penetration into the brain is undesirable, obidoxime is the most efficacious prophylactic agent already approved for clinical use.
Collapse
Affiliation(s)
- Dietrich E. Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Syed M. Nurulain
- Bio Science Department, COMSATS Institute of Information Technology, Bio Sciences Block, CUI, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan;
| | - Mohamed Y. Hasan
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanského 62/26, 500 03 Hradec Kralove, Czech Republic;
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
7
|
Lenina OA, Zueva IV, Zobov VV, Semenov VE, Masson P, Petrov KA. Slow-binding reversible inhibitor of acetylcholinesterase with long-lasting action for prophylaxis of organophosphate poisoning. Sci Rep 2020; 10:16611. [PMID: 33024231 PMCID: PMC7538863 DOI: 10.1038/s41598-020-73822-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/02/2022] Open
Abstract
Organophosphorus (OP) compounds represent a serious health hazard worldwide. The dominant mechanism of their action results from covalent inhibition of acetylcholinesterase (AChE). Standard therapy of acute OP poisoning is partially effective. However, prophylactic administration of reversible or pseudo-irreversible AChE inhibitors before OP exposure increases the efficiency of standard therapy. The purpose of the study was to test the duration of the protective effect of a slow-binding reversible AChE inhibitor (C547) in a mouse model against acute exposure to paraoxon (POX). It was shown that the rate of inhibition of AChE by POX in vitro after pre-inhibition with C547 was several times lower than without C547. Ex vivo pre-incubation of mouse diaphragm with C547 significantly prevented the POX-induced muscle weakness. Then it was shown that pre-treatment of mice with C547 at the dose of 0.01 mg/kg significantly increased survival after poisoning by 2xLD50 POX. The duration of the pre-treatment was effective up to 96 h, whereas currently used drug for pre-exposure treatment, pyridostigmine at a dose of 0.15 mg/kg was effective less than 24 h. Thus, long-lasting slow-binding reversible AChE inhibitors can be considered as new potential drugs to increase the duration of pre-exposure treatment of OP poisoning.
Collapse
Affiliation(s)
- Oksana A Lenina
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, Russian Federation, 420088
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, Russian Federation, 420088
| | - Vladimir V Zobov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, Russian Federation, 420088
- Kazan Federal University, 18 Kremlyovskaya str, Kazan, Russia, 420008
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, Russian Federation, 420088
| | - Patrick Masson
- Kazan Federal University, 18 Kremlyovskaya str, Kazan, Russia, 420008
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center "Kazan Scientific Center of the Russian Academy of Sciences", Arbuzov str., 8, Kazan, Russian Federation, 420088.
- Kazan Federal University, 18 Kremlyovskaya str, Kazan, Russia, 420008.
| |
Collapse
|
8
|
Safety and Efficacy of New Oximes to Reverse Low Dose Diethyl-Paraoxon-Induced Ventilatory Effects in Rats. Molecules 2020; 25:molecules25133056. [PMID: 32635368 PMCID: PMC7411965 DOI: 10.3390/molecules25133056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Oximes are used in addition to atropine to treat organophosphate poisoning. However, the efficiency of oximes is still a matter of debate. In vitro experiments suggested than new oximes are more potent than the commercial oximes. However, the antidotal activity of new oximes has not been assessed in vivo. Methods: The aim of this work was to assess the safety and efficiency of new oximes compared to pralidoxime in a rat model of diethyl paraoxon-induced non-lethal respiratory toxicity. Results: Safety study of oximes showed no adverse effects on ventilation in rats. KO-33, KO-48, KO-74 oximes did not exhibit significant antidotal effect in vivo. In contrast, KO-27 and BI-6 showed evidence of antidotal activity by normalization of respiratory frequency and respiratory times. KO-27 became inefficient only during the last 30 min of the study. In contrast, pralidoxime demonstrated to be inefficient at 30 min post injection. Inversely, the antidotal activity of BI-6 occurred lately, within the last 90 min post injection. Conclusion: This study showed respiratory safety of new oximes. Regarding, the efficiency, KO-27 revealed to be a rapid acting antidote toward diethylparaoxon-induced respiratory toxicity, meanwhile BI-6 was a late-acting antidote. Simultaneous administration of these two oximes might result in a complete and prolonged antidotal efficiency.
Collapse
|