1
|
Cao D, Yuan X, Jiang X, Wu T, Xiang Y, Ji Z, Liu J, Dong X, Bi K, Tønjum T, Xu K, Zhang Y. Antimicrobial and Antibiofilm Effects of Bithionol against Mycobacterium abscessus. Antibiotics (Basel) 2024; 13:529. [PMID: 38927195 PMCID: PMC11200778 DOI: 10.3390/antibiotics13060529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Mycobacterium abscessus (M. abscessus) is a multidrug-resistant nontuberculous mycobacterium (NTM) that is responsible for a wide spectrum of infections in humans. The lack of effective bactericidal drugs and the formation of biofilm make its clinical treatment very difficult. The FDA-approved drug library containing 3048 marketed and pharmacopeial drugs or compounds was screened at 20 μM against M. abscessus type strain 19977 in 7H9 medium, and 62 hits with potential antimicrobial activity against M. abscessus were identified. Among them, bithionol, a clinically approved antiparasitic agent, showed excellent antibacterial activity and inhibited the growth of three different subtypes of M. abscessus from 0.625 μM to 2.5 μM. We confirmed the bactericidal activity of bithionol by the MBC/MIC ratio being ≤4 and the time-kill curve study and also electron microscopy study. Interestingly, it was found that at 128 μg/mL, bithionol could completely eliminate biofilms after 48h, demonstrating an outstanding antibiofilm capability compared to commonly used antibiotics. Additionally, bithionol could eliminate 99.9% of biofilm bacteria at 64 μg/mL, 99% at 32 μg/mL, and 90% at 16 μg/mL. Therefore, bithionol may be a potential candidate for the treatment of M. abscessus infections due to its significant antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiuzhi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tiantian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xu Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo University Hospital, 0424 Oslo, Norway
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
2
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Nguyen TQ, Heo BE, Park Y, Jeon S, Choudhary A, Moon C, Jang J. CRISPR Interference-Based Inhibition of MAB_0055c Expression Alters Drug Sensitivity in Mycobacterium abscessus. Microbiol Spectr 2023; 11:e0063123. [PMID: 37158736 PMCID: PMC10269454 DOI: 10.1128/spectrum.00631-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
There is an unmet medical need for effective treatments against Mycobacterium abscessus infections. Although advanced molecular genetic tools to validate drug targets and resistance of M. abscessus exist, the practical design and construction of plasmids are relatively laborious and time-consuming. Thus, for this purpose, we used CRISPR interference (CRISPRi) combined with catalytically deactivated Cas9 to inhibit the gene expression of a predicted LysR-type transcriptional regulator gene, MAB_0055c, in M. abscessus and evaluated its contribution to the development of drug resistance. Our results showed that silencing the MAB_0055c gene lead to increased rifamycin susceptibility depending on the hydroquinone moiety. These results demonstrate that CRISPRi is an excellent approach for studying drug resistance in M. abscessus. IMPORTANCE In this study, we utilized CRISPR interference (CRISPRi) to specifically target the MAB_0055c gene in M. abscessus, a bacterium that causes difficult-to-treat infections. The study found that silencing the gene lead to increased rifabutin and rifalazil susceptibility. This study is the first to establish a link between the predicted LysR-type transcriptional regulator gene and antibiotic resistance in mycobacteria. These findings underscore the potential of using CRISPRi as a tool for elucidating resistance mechanisms, essential drug targets, and drug mechanisms of action, which could pave the way for more effective treatments for M. abscessus infections. The results of this study could have important implications for the development of new therapeutic options for this challenging-to-treat bacterial infection.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arunima Choudhary
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Bich Hanh BT, Quang NT, Park Y, Heo BE, Jeon S, Park JW, Jang J. Omadacycline Potentiates Clarithromycin Activity Against Mycobacterium abscessus. Front Pharmacol 2021; 12:790767. [PMID: 34955859 PMCID: PMC8693020 DOI: 10.3389/fphar.2021.790767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium abscessus is a difficult respiratory pathogen to treat, when compared to other nontuberculus mycobacteria (NTM), due to its drug resistance. In this study, we aimed to find a new clarithromycin partner that potentiated strong, positive, synergy against M. abscessus among current anti-M. abscessus drugs, including omadacycline, amikacin, rifabutin, bedaquiline, and cefoxitine. First, we determined the minimum inhibitory concentrations required of all the drugs tested for M. abscessus subsp. abscessus CIP104536T treatment using a resazurin microplate assay. Next, the best synergistic partner for clarithromycin against M. abscessus was determined using an in vitro checkerboard combination assay. Among the drug combinations evaluated, omadacycline showed the best synergistic effect with clarithromycin, with a fractional inhibitory concentration index of 0.4. This positive effect was also observed against M. abscessus clinical isolates and anti-M. abscessus drug resistant strains. Lastly, this combination was further validated using a M. abscessus infected zebrafish model. In this model, the clarithromycin-omadacyline regimen was found to inhibit the dissemination of M. abscessus, and it significantly extended the lifespan of the M. abscessus infected zebrafish. In summation, the synergy between two anti-M. abscessus compounds, clarithromycin and omadacycline, provides an attractive foundation for a new M. abscessus treatment regimen.
Collapse
Affiliation(s)
- Bui Thi Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Nguyen Thanh Quang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju, South Korea
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Korea & Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
5
|
Looking Back to Amycolatopsis: History of the Antibiotic Discovery and Future Prospects. Antibiotics (Basel) 2021; 10:antibiotics10101254. [PMID: 34680834 PMCID: PMC8532670 DOI: 10.3390/antibiotics10101254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of antibiotic-resistant pathogenic bacteria in recent decades leads us to an urgent need for the development of new antibacterial agents. The species of the genus Amycolatopsis are known as producers of secondary metabolites that are used in medicine and agriculture. The complete genome sequences of the Amycolatopsis demonstrate a wide variety of biosynthetic gene clusters, which highlights the potential ability of actinomycetes of this genus to produce new antibiotics. In this review, we summarize information about antibiotics produced by Amycolatopsis species. This knowledge demonstrates the prospects for further study of this genus as an enormous source of antibiotics.
Collapse
|
6
|
Quang NT, Jang J. Current Molecular Therapeutic Agents and Drug Candidates for Mycobacterium abscessus. Front Pharmacol 2021; 12:724725. [PMID: 34526902 PMCID: PMC8435730 DOI: 10.3389/fphar.2021.724725] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium abscessus has been recognised as a dreadful respiratory pathogen among the non-tuberculous mycobacteria (NTM) because of misdiagnosis, prolonged therapy with poor treatment outcomes and a high cost. This pathogen also shows extremely high antimicrobial resistance against current antibiotics, including the anti-tuberculosis agents. Therefore, current chemotherapies require a long curative period and the clinical outcomes are not satisfactory. Thus, there is an urgent need for discovering and developing novel, more effective anti-M. abscessus drugs. In this review, we sum the effectiveness of the current anti-M. abscessus drugs and drug candidates. Furthermore, we describe the shortcomings and difficulties associated with M. abscessus drug discovery and development.
Collapse
Affiliation(s)
- Nguyen Thanh Quang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio and Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio and Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
7
|
Novel Ansa-Chain Conformation of a Semi-Synthetic Rifamycin Prepared Employing the Alder-Ene Reaction: Crystal Structure and Absolute Stereochemistry. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Rifamycins are an extremely important class of antibacterial agents whose action results from the inhibition of DNA-dependent RNA synthesis. A special arrangement of unsubstituted hydroxy groups at C21 and C23, with oxygen atoms at C1 and C8 is essential for activity. Moreover, it is known that the antibacterial action of rifamycin is lost if either of the two former hydroxy groups undergo substitution and are no longer free to act in enzyme inhibition. In the present work, we describe the successful use of an Alder-Ene reaction between Rifamycin O, 1 and diethyl azodicarboxylate, yielding 2, which was a targeted introduction of a relatively bulky group close to C21 to protect its hydroxy group. Many related azo diesters were found to react analogously, giving one predominant product in each case. To determine unambiguously the stereochemistry of the Alder-Ene addition process, a crystalline zwitterionic derivative 3 of the diethyl azodicarboxylate adduct 2 was prepared by reductive amination at its spirocyclic centre C4. The adduct, as a mono chloroform solvate, crystallized in the non-centrosymmetric Sohnke orthorhombic space group, P212121. The unique conformation and absolute stereochemistry of 3 revealed through X-ray crystal structure analysis is described.
Collapse
|
8
|
Kim T, Hanh BTB, Heo B, Quang N, Park Y, Shin J, Jeon S, Park JW, Samby K, Jang J. A Screening of the MMV Pandemic Response Box Reveals Epetraborole as a New Potent Inhibitor against Mycobacterium abscessus. Int J Mol Sci 2021; 22:ijms22115936. [PMID: 34073006 PMCID: PMC8199016 DOI: 10.3390/ijms22115936] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium abscessus is the one of the most feared bacterial respiratory pathogens in the world. Unfortunately, there are many problems with the current M. abscessus therapies available. These problems include misdiagnoses, high drug resistance, poor long-term treatment outcomes, and high costs. Until now, there have only been a few new compounds or drug formulations which are active against M. abscessus, and these are present in preclinical and clinical development only. With that in mind, new and more powerful anti-M. abscessus medicines need to be discovered and developed. In this study, we conducted an in vitro-dual screen against M. abscessus rough (R) and smooth (S) variants using a Pandemic Response Box and identified epetraborole as a new effective candidate for M. abscessus therapy. For further validation, epetraborole showed significant activity against the growth of the M. abscessus wild-type strain, three subspecies, drug-resistant strains and clinical isolates in vitro, while also inhibiting the growth of M. abscessus that reside in macrophages without cytotoxicity. Furthermore, the in vivo efficacy of epetraborole in the zebrafish infection model was greater than that of tigecycline. Thus, we concluded that epetraborole is a potential anti-M. abscessus candidate in the M. abscessus drug search.
Collapse
Affiliation(s)
- Taeho Kim
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (T.K.); (B.-T.-B.H.)
| | - Bui-Thi-Bich Hanh
- Division of Applied Life Science (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (T.K.); (B.-T.-B.H.)
| | - Boeun Heo
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Nguyenthanh Quang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Yujin Park
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Jihyeon Shin
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
| | - Seunghyeon Jeon
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - June-Woo Park
- Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52843, Korea;
- Human and Environmental Toxicology Program, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kirandeep Samby
- Medicines for Malaria Venture (MMV), 20, Route de Pré-Bois, 1215 Geneva, Switzerland;
| | - Jichan Jang
- Molecular Mechanisms of Antibiotics, Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (B.H.); (N.Q.); (Y.P.); (J.S.)
- Correspondence: ; Tel.: +82-055-772-1368
| |
Collapse
|
9
|
Kim H, Kim S, Kim M, Lee C, Yang I, Nam SJ. Bioactive natural products from the genus Salinospora: a review. Arch Pharm Res 2020; 43:1230-1258. [PMID: 33237436 DOI: 10.1007/s12272-020-01288-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022]
Abstract
Actinomycetes are an important source for bioactive secondary metabolites. Among them, the genus Salinispora is one of the first salt obligatory marine species worldwide and is typically found in various types of substrates in tropical and subtropical marine environments including sediments and marine organisms. This genus produces a wide range of chemical scaffolds and bioactive compounds such as lomaiviticins, cyclomarins, rifamycins, salinaphthoquinones, and salinosporamides. This review arranged Salinispora derived secondary metabolites according to the three species that comprise the genus. Moreover, muta- and semi-synthesis analogs derived from salinosporamide were also described in this review.
Collapse
Affiliation(s)
- Haerin Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Sohee Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Minju Kim
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Chaeyoung Lee
- The Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Pusan, 49112, Korea.
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
10
|
Etamycin as a Novel Mycobacterium abscessus Inhibitor. Int J Mol Sci 2020; 21:ijms21186908. [PMID: 32967077 PMCID: PMC7555287 DOI: 10.3390/ijms21186908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
The increase in drug-resistant Mycobacterium abscessus, which has become resistant to existing standard-of-care agents, is a major concern, and new antibacterial agents are strongly needed. In this study, we introduced etamycin that showed an excellent activity against M. abscessus. We found that etamycin significantly inhibited the growth of M. abscessus wild-type strain, three subspecies, and clinical isolates in vitro and inhibited the growth of M. abscessus that resides in macrophages without cytotoxicity. Furthermore, the in vivo efficacy of etamycin in the zebrafish (Danio rerio) infection model was greater than that of clarithromycin, which is recommended as the core agent for treating M. abscessus infections. Thus, we concluded that etamycin is a potential anti-M. abscessus candidate for further development as a clinical drug candidate.
Collapse
|