1
|
Nguyen MH, Nguyen NYT, Chen YS, Nguyen Le HT, Vo HT, Yen CH. Unveiling the potential of medicinal herbs as the source for in vitro screening toward the inhibition of Nrf2. Heliyon 2024; 10:e38411. [PMID: 39416811 PMCID: PMC11481618 DOI: 10.1016/j.heliyon.2024.e38411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Background Drug resistance is one of the leading causes attributed to the failure of cancer treatment by chemotherapy. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor regulating gene expression in cell defense against oxidative stress or hazardous factors. Taking advantage of this feature, Nrf2 also serves as the bodyguard for both normal and cancer cells. Many pieces of evidence have reported that inhibiting Nrf2 activity in cancer cells can reverse chemotherapy drug resistance. In addition, secondary metabolites from medicinal plants have been reported to inhibit Nrf2 activity in the in vitro study. This study aimed to preliminarily investigate fractions from medicinal herbs that inhibit Nrf2 activity in Huh7 liver cancer cells, thereby establishing a basis for subsequent isolation and extraction processes. Materials and methods Sub-fractions from five medicinal plants have been evaluated the Nrf2 inhibitor activity on Huh7 cells through luciferase-reported genes assay. Thin-layer chromatography (TLC) was also performed to quantify the extracts' main phytochemistry components. Combining the half-maximal inhibitory concentration (IC50) and half-maximal cytotoxicity concentration (CC50) enables us to determine which extracts have the potential for further isolation steps. Results Ten over 30 crude extracts and sub-fractions showed the inhibition of Nrf2 activity with the percentage ranging from 30 to 97 %. The methanol and n-hexane sub-fractions from Helicteres hirsuta Lour. leaves showed the strongest inhibition ability on Nrf2 activity with the IC50 = 20.98 ± 3.67 and 42.22 ± 2.10 μg/mL, respectively. The TLC results showed the presence of steroids and terpenoids in the promising sub-fractions. Conclusions Combining the TLC results with the in vitro screening on Nrf2 activity screening of medicinal plants, the outcomes suggest the steroids and terpenoids in the methanol extract and hexane sub-fraction from Helicteres hirsuta Lour. leaves show promise towards inhibiting Nrf2 activity in liver cancer cell lines without toxicity in the normal cells.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Viet Nam
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Viet Nam
| | - Nhi Yen Thi Nguyen
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Viet Nam
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Viet Nam
- Faculty of Applied Science, University of Technology, Vietnam National University Ho Chi Minh City, 268 Ly Thuong Kiet Street Ward 14, District 10, Ho Chi Minh City, 70000, Viet Nam
| | - Yi-Siao Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Han Thien Nguyen Le
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Viet Nam
| | - Hoa Thanh Vo
- University of Health Sciences, Vietnam National University Ho Chi Minh City, YA1 Administrative Building, Hai Thuong Lan Ong Street, Dong Hoa Ward, Di An City, Binh Duong Province, 75308, Viet Nam
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 70000, Viet Nam
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| |
Collapse
|
2
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
3
|
Tran HL, Chen YS, Hung HW, Shih BL, Lee TY, Yen CH, Lin JB. Diet Supplementation with Prinsepiae Nux Extract in Broiler Chickens: Its Effect on Growth Performance and Expression of Antioxidant, Pro-Inflammatory, and Heat Shock Protein Genes. Animals (Basel) 2023; 14:73. [PMID: 38200804 PMCID: PMC10778437 DOI: 10.3390/ani14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Heat stress significantly undermines the poultry industry by escalating rates of morbidity and mortality and impairing growth performance. Our recent findings indicate that Prinsepiae Nux extract (PNE) effectively stimulates the Nrf2 signaling pathway, a vital element in cellular antioxidant stress responses. This study further explores the prospective benefits of supplementing PNE into poultry feed to enhance broiler growth in heat-stressed conditions. An Nrf2-luciferase reporter assay was developed in a chicken fibroblast cell line, demonstrating that PNE induces Nrf2 activity in a concentration-dependent manner. Real-time RT-PCR results showed that PNE intensifies the expression of Nrf2-responsive targets such as Ho1 and Nqo1 in chicken fibroblasts. A total of 160 one-day-old Arbor Acres broiler chicks were randomly assigned into four groups, each receiving a basal diet supplemented with either 0% (control), 0.1% PNE, 1% PNE, or commercial electrolyte for 35 days. Broilers were raised in an environment where the ambient temperature exceeded 30 °C for approximately seven hours each day, fluctuating between 26 and 34 °C, which is known to induce mild heat stress. The findings reveal that a 1% PNE supplement led to a significant decrease in the feed conversion ratio (FCR) compared to the control group. Moreover, chickens supplemented with 1% PNE exhibited a substantial increase in hepatic mRNA expression of antioxidant genes, such as Nqo1, Gclc, Sod2, Cat, and heat shock protein-related genes including Hsp90 and Hsf1, and a decrease in pro-inflammatory cytokine genes Il-6 and Il-1β. Consequently, PNE holds potential as a feed supplement to strengthen the antioxidant defenses of broilers and build heat stress resilience in the poultry industry.
Collapse
Affiliation(s)
- Hong-Loan Tran
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Siao Chen
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
| | - His-Wen Hung
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Bor-Ling Shih
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Tsung-Yu Lee
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jeng-Bin Lin
- Taiwan Livestock Research Institute, Ministry of Agriculture, Tainan City 71246, Taiwan
| |
Collapse
|
4
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
5
|
Sharifi-Rad J, Seidel V, Izabela M, Monserrat-Mequida M, Sureda A, Ormazabal V, Zuniga FA, Mangalpady SS, Pezzani R, Ydyrys A, Tussupbekova G, Martorell M, Calina D, Cho WC. Phenolic compounds as Nrf2 inhibitors: potential applications in cancer therapy. Cell Commun Signal 2023; 21:89. [PMID: 37127651 PMCID: PMC10152593 DOI: 10.1186/s12964-023-01109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Cancer is a leading cause of death worldwide and involves an oxidative stress mechanism. The transcription factor Nrf2 has a crucial role in cytoprotective response against oxidative stress, including cancer growth and progression and therapy resistance. For this reason, inhibitors of Nrf2 are new targets to be studied. Traditional plant-based remedies rich in phytochemicals have been used against human cancers and phenolic compounds are known for their chemopreventive properties. This comprehensive review offers an updated review of the role of phenolic compounds as anticancer agents due to their action on Nrf2 inhibition. In addition, the role of naturally-occurring bioactive anticancer agents are covered in the clinical applications of polyphenols as Nrf2 inhibitors. Video Abstract.
Collapse
Affiliation(s)
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Michalak Izabela
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-372, Wroclaw, Poland
| | - Margalida Monserrat-Mequida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122, Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER Fisiopatología de La Obesidad Y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Felipe A Zuniga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | | | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128, Padova, Italy
- AIROB, Associazione Italiana Per La Ricerca Oncologica Di Base, Padova, Italy
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
- The Elliott School of International Affairs, 1957 E St NW, George Washington UniversityWashington DC, 20052, USA
| | - Gulmira Tussupbekova
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040, Almaty, Kazakhstan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Wang SH, Chen YS, Lai KH, Lu CK, Chang HS, Wu HC, Yen FL, Chen LY, Lee JC, Yen CH. Prinsepiae Nux Extract Activates NRF2 Activity and Protects UVB-Induced Damage in Keratinocyte. Antioxidants (Basel) 2022; 11:antiox11091755. [PMID: 36139829 PMCID: PMC9495439 DOI: 10.3390/antiox11091755] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
Ultraviolet B (UVB) is one of the most important environmental factors that cause extrinsic aging through increasing intracellular reactive oxygen species (ROS) production in the skin. Due to its protective roles against oxidative stress, nuclear factor erythroid-2-related factor (NRF2) has been traditionally considered as a target for skin aging prevention. Here, we identified the extract of Prinsepiae Nux, a top-grade drug listed in Shen Nong Ben Cao Jing, as a potent NRF2 activator by high-throughput screening. A bioassay-guided fractionation experiment revealed that NRF2-activating components were concentrated in the 90% methanol (MP) fraction. MP fraction significantly increased the expression of NRF2 and HO-1 protein and upregulated HO-1 and NQO1 mRNA expression in HaCaT cells. Moreover, MP fraction pre-treatment dramatically reversed UVB-induced depletion of NRF2 and HO-1, accumulation of intracellular ROS, NF-κB activation, and the upregulation of pro-inflammatory genes. Finally, the qualitative analysis using UPLC-tandem mass spectroscopy revealed the most abundant ion peak in MP fraction was identified as α-linolenic acid, which was further proved to activate NRF2 signaling. Altogether, the molecular evidence suggested that MP fraction has the potential to be an excellent source for the discovery of natural medicine to treat/prevent UVB-induced skin damage.
Collapse
Affiliation(s)
- Shih-Han Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Siao Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
| | - Kuei-Hung Lai
- Ph.D. Program in Clinical Drug, Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Hsun-Shuo Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ho-Cheng Wu
- Ph.D. Program in Clinical Drug, Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Feng-Lin Yen
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Lo-Yun Chen
- Ph.D. Program in Clinical Drug, Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- National Natural Product Libraries and High-Throughput Screening Core Facility, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2686)
| |
Collapse
|
7
|
Liu F, Mallick S, O’Donnell TJ, Rouzimaimaiti R, Luo Y, Sun R, Wall M, Wongwiwatthananukit S, Date A, Silva DK, Williams PG, Chang LC. Coumarinolignans with Reactive Oxygen Species (ROS) and NF-κB Inhibitory Activities from the Roots of Waltheria indica. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103270. [PMID: 35630746 PMCID: PMC9147481 DOI: 10.3390/molecules27103270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Seven new coumarinolignans, walthindicins A–F (1a, 1b, 2–5, 7), along with five known analogs (6, 8–11), were isolated from the roots of Waltheria indica. The structures of the new compounds are determined by detailed nuclear magnetic resonance (NMR), circular dichroism (CD) with extensive computational support, and mass spectroscopic data interpretation. Compounds were tested for their antioxidant activity in Human Cervical Cancer cells (HeLa cells). Compounds 1a and 6 showed higher reactive oxygen species (ROS) inhibitory activity at 20 μg/mL when compared with other natural compound-based antioxidants such as ascorbic acid. Considering the role of ROS in nuclear-factor kappa B (NF-κB) activation, compounds 1a and 6 were evaluated for NF-κB inhibitory activity and showed a concentration-dependent inhibition in Human Embryonic Kidney 293 cells (Luc-HEK-293).
Collapse
Affiliation(s)
- Feifei Liu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI 96720, USA; (F.L.); (S.M.); (R.R.); (A.D.)
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Sudipta Mallick
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI 96720, USA; (F.L.); (S.M.); (R.R.); (A.D.)
| | - Timothy J. O’Donnell
- Department of Chemistry, 2545 McCarthy Mall, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA; (T.J.O.); (Y.L.); (R.S.); (P.G.W.)
| | - Ruxianguli Rouzimaimaiti
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI 96720, USA; (F.L.); (S.M.); (R.R.); (A.D.)
| | - Yuheng Luo
- Department of Chemistry, 2545 McCarthy Mall, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA; (T.J.O.); (Y.L.); (R.S.); (P.G.W.)
| | - Rui Sun
- Department of Chemistry, 2545 McCarthy Mall, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA; (T.J.O.); (Y.L.); (R.S.); (P.G.W.)
| | - Marisa Wall
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA-ARS, Hilo, HI 96720, USA;
| | - Supakit Wongwiwatthananukit
- Department of Pharmacy Practice, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI 96720, USA;
| | - Abhijit Date
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI 96720, USA; (F.L.); (S.M.); (R.R.); (A.D.)
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ 85715, USA
| | | | - Philip G. Williams
- Department of Chemistry, 2545 McCarthy Mall, University of Hawai‘i at Manoa, Honolulu, HI 96822, USA; (T.J.O.); (Y.L.); (R.S.); (P.G.W.)
| | - Leng Chee Chang
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai‘i at Hilo, Hilo, HI 96720, USA; (F.L.); (S.M.); (R.R.); (A.D.)
- Correspondence: ; Tel.: +1-(808)-981-8018
| |
Collapse
|
8
|
Bioactive lipids from the fruits of Solanum xanthocarpum and their anti-inflammatory activities. Fitoterapia 2022; 157:105134. [DOI: 10.1016/j.fitote.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/20/2022]
|
9
|
Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1077-1088. [PMID: 34522690 PMCID: PMC8434863 DOI: 10.2147/jhc.s270533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor classifications based on alterations in the genome, epigenome, or proteome have revealed distinct tumor subgroups that are associated with clinical outcomes. Several landmark studies have demonstrated that such classifications can significantly improve patient outcomes by enabling tailoring of therapy to specific alterations in cancer cells. Since cancer cells accumulate numerous alterations in many cancer-related genes, it is a daunting task to find and confirm important cancer-promoting alterations as therapeutic targets or biomarkers that can predict clinical outcomes such as survival and response to treatments. To aid further advances, we provide here an overview of the current understanding of molecular and genomic subtypes of hepatocellular carcinoma (HCC). System-level integration of data from multiple studies and development of new technical platforms for analyzing patient samples hold great promise for the discovery of new targets for treatment and correlated biomarkers, leading to personalized medicine for treatment of HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Sakthivel KM, Vishnupriya S, Priya Dharshini LC, Rasmi RR, Ramesh B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin. J Pharm Pharmacol 2021; 74:147-161. [PMID: 33847360 DOI: 10.1093/jpp/rgab047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Scopoletin (6-methoxy-7-hydroxycoumarin) is a naturally occurring coumarin belonging to the category of secondary metabolites. Coumarins are commonly found in several herbs and play a prominent role in the defense mechanism of plants. Beneficial effects of scopoletin including antioxidant, anti-diabetic, hepatoprotective, neuroprotective and anti-microbial activity induced via numerous intracellular signalling mechanisms have been widely studied. However, anti-inflammation and anti-tumorigenesis properties of scopoletin are not well documented in the literature. Therefore, the primary focus of the present review was to highlight the plethora of research pertaining to the signalling mechanisms associated with the prevention of the progression of disease condition by scopoletin. KEY FINDINGS Multiple signalling pathways like nuclear erythroid factor-2 (NEF2)-related factor-2 (NRF-2), apoptosis/p53 signalling, nuclear factor-κB (NF-κB) signalling, autophagy signalling, hypoxia signalling, signal transducer and activator of transcription-3 (STAT3) signalling, Wnt-β signalling, Notch signalling are coupled with the anti-inflammation and anti-tumorigenesis potential of scopoletin. SUMMARY Understanding crucial targets in these molecular signalling pathways may support the role of scopoletin as a promising naturally derived bioactive compound for the treatment of several diseases.
Collapse
Affiliation(s)
| | - Selvaraj Vishnupriya
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Balasubramanian Ramesh
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Identification of Beilschmiedia tsangii Root Extract as a Liver Cancer Cell-Normal Keratinocyte Dual-Selective NRF2 Regulator. Antioxidants (Basel) 2021; 10:antiox10040544. [PMID: 33915987 PMCID: PMC8066689 DOI: 10.3390/antiox10040544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) plays a crucial role in regulating the expression of genes participating in cellular defense mechanisms against oxidative or xenobiotic insults. However, there is increasing evidence showing that hyperactivation of NRF2 is associated with chemoresistance in several cancers, including hepatocellular carcinoma (HCC), thus making NRF2 an attractive target for cancer therapy. Another important issue in cancer medication is the adverse effects of these substances on normal cells. Here, we attempted to identify a dual-selective NRF2 regulator that exerts opposite effects on NRF2-hyperactivated HCC cells and normal keratinocytes. An antioxidant response element driven luciferase reporter assay was established in Huh7 and HaCaT cells as high-throughput screening platforms. Screening of 3,000 crude extracts from the Taiwanese Indigenous Plant Extract Library resulted in the identification of Beilschmiedia tsangii (BT) root extract as a dual-selective NRF2 regulator. Multiple compounds were found to contribute to the dual-selective effects of BT extract on NRF2 signaling in two cell lines. BT extract reduced NRF2 protein level and target gene expression levels in Huh7 cells but increased them in HaCaT cells. Furthermore, notable combinatory cytotoxic effects of BT extract and sorafenib on Huh7 cells were observed. On the contrary, sorafenib-induced inflammatory reactions in HaCaT cells were reduced by BT extract. In conclusion, our results suggest that the combination of a selective NRF2 activator and inhibitor could be a practical strategy for fine-tuning NRF2 activity for better cancer treatment and that plant extracts or partially purified fractions could be a promising source for the discovery of dual-selective NRF2 regulators.
Collapse
|