1
|
Zhang WY, Li GC, Fan Y, Sun XQ, Wang B, Zhang CY, Feng XX, Xu WB, Liu JC. Synthesis of three cisplatin-conjugated asymmetric porphyrin photosensitizers for photodynamic therapy. Dalton Trans 2024; 53:582-590. [PMID: 38059743 DOI: 10.1039/d3dt02900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Photodynamic therapy provides a promising solution for treating various cancer types. In this study, three distinct asymmetric porphyrin-cisplatin complex photosensitizers (ZnPt-P1, ZnPt-P2, and ZnPt-P3) were synthesized, each having unique side chains. Through a set of experiments involving singlet oxygen detection and density functional theory, ZnPt-P1 was demonstrated to have excellent efficacy, exceeding that of ZnPt-P2 and ZnPt-P3. Notably, ZnPt-1 showed significant phototoxicity while maintaining low dark toxicity when tested on HepG2 cells. Additionally, further examination revealed that ZnPt-P1 had the capability to generate reactive oxygen species within cancer cells when exposed to light irradiation. Taken together, these results highlight the potential of ZnPt-P1 as a photosensitizer for use in photodynamic therapy. This study contributes to enhancing cancer treatment methodologies and provides insights for the future development of innovative drugs for photosensitization.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Gui-Chen Li
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Yan Fan
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xue-Qin Sun
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Bo Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Chun-Yan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Xiao-Xia Feng
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Wei-Bing Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agriculture University, Lanzhou, 730000, P. R. China
| | - Jia-Cheng Liu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry a Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
2
|
Diaz-Uribe C, Rangel D, Vallejo W, Valle R, Hidago-Rosa Y, Zarate X, Schott E. Photophysical characterization of tetrahydroxyphenyl porphyrin Zn(II) and V(IV) complexes: experimental and DFT study. Biometals 2023; 36:1257-1272. [PMID: 37344742 DOI: 10.1007/s10534-023-00514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Photodynamic therapy (PDT) is a promising technique for the treatment of various diseases. In this sense, the singlet oxygen quantum yield (Φ∆) is a physical-chemical property that allows to stablish the applicability of a potential photosensitizers (PS) as a drug for PDT. In the herein report, the Φ∆ of three photosensitizers was determined: metal-free tetrahydroxyphenyl porphyrin (THPP), THPP-Zn and the THPP-V metal complexes. Their biological application was also evaluated. Therefore, the in vitro study was carried out to assess their biological activity against Escherichia coli. The metal-porphyrin complexes exhibited highest activities against the bacterial strain Escherichia coli. at the highest concentration (175 μg/mL) and show better activity than the free base ligand (salts and blank solution). Results indicated a relation between Φ∆ and the inhibitory activity against Escherichia coli, thus, whereas higher is the Φ∆, higher is the inhibitory activity. The values of the Φ∆ and the inhibitory activity follows the tendency THPP-Zn > THPP > THPP-V. Furthermore, quantum chemical calculations allowed to gain deep insight into the electronic and optical properties of THPP-Zn macrocycle, which let to verify the most probable energy transfer pathway involved in the singlet oxygen generation.
Collapse
Affiliation(s)
- Carlos Diaz-Uribe
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia.
| | - Daily Rangel
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - William Vallejo
- Grupo de Investigación en Fotoquímica y Fotobiología. Programa de Química. Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Roger Valle
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Yoan Hidago-Rosa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia, Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile
- Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia, 1509, Santiago, Providencia, Chile
| | - Ximena Zarate
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia, Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
- Millennium Nucleus in Catalytic Processes Towards Sustainable Chemistry (CSC), Santiago, Chile.
| |
Collapse
|
3
|
Espitia-Almeida F, Valle-Molinares R, Navarro Quiroz E, Pacheco-Londoño LC, Galán-Freyle NJ. Photodynamic Antimicrobial Activity of a Novel 5,10,15,20-Tetrakis (4-Ethylphenyl) Porphyrin against Clinically Important Bacteria. Pharmaceuticals (Basel) 2023; 16:1059. [PMID: 37630978 PMCID: PMC10459089 DOI: 10.3390/ph16081059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The growing emergence of microbes resistant to commercially available antibiotic therapies poses a threat to healthcare systems worldwide. Multiple factors have been associated with the increasing incidence of hospital-acquired infections caused by antibiotic-resistant pathogens, including the indiscriminate use of broad-spectrum antibiotics, the massive application of antibiotics in hospitals as a prophylactic measure, self-medication, and nonadherence to pharmacological therapies by patients. In this study, we developed a novel treatment to mitigate the impact of microbial resistance. We synthesized a benzoporphyrin derivative, 5,10,15,20-tetrakis (4-ethylphenyl) porphyrin (TEtPP), with a reaction yield close to 50%. TEtPP exhibited excellent photophysical properties (Φf = 0.12 ± 0.04 and ΦΔ = 0.81 ± 0.23) and was thereby assessed as a potential agent for antibacterial photodynamic therapy. The photophysical properties of the synthesized porphyrin derivative were correlated with the assayed antimicrobial activity. TEtPP showed higher activity against the MRSA strain under irradiation than in the absence of irradiation (minimum inhibitory concentration (MIC) = 69.42 µg/mL vs. MIC = 109.30 µg/mL, p < 0.0001). Similar behavior was observed against P. aeruginosa (irradiated MIC = 54.71 µg/mL vs. nonirradiated MIC = 402.90 µg/mL, p < 0.0001). TEtPP exhibited high activity against S. aureus in both the irradiated and nonirradiated assays (MIC = 67.68 µg/mL vs. MIC = 58.26 µg/mL, p = 0.87).
Collapse
Affiliation(s)
- Fabián Espitia-Almeida
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Roger Valle-Molinares
- Faculty of Basic Sciences, Biology Program, Universidad del Atlántico, Puerto Colombia 081001, Colombia
| | - Elkin Navarro Quiroz
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
| | | | - Nataly J. Galán-Freyle
- Life Science Research Center, Universidad Simón Bolívar, Barranquilla 080002, Colombia (N.J.G.-F.)
| |
Collapse
|
4
|
Linares IAP, Uría MS, Graminha MAS, Iglesias BA, Velásquez AMA. Antileishmanial activity of tetra-cationic porphyrins with peripheral Pt(II) and Pd(II) complexes mediated by photodynamic therapy approaches. Photodiagnosis Photodyn Ther 2023:103641. [PMID: 37268042 DOI: 10.1016/j.pdpdt.2023.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Leishmaniasis is a seriously neglected disease that impacts more than one billion people in endemic areas of the globe. Several drawbacks are associated with the currently existing drugs for the treatment as low effectiveness, toxicity, and the emergence of resistant strains that demonstrates the importance of looking for novel therapeutic alternatives. Photodynamic therapy (PDT) is a promising novel alternative for cutaneous leishmaniasis treatment because its topical application avoids potential side effects generally associated with oral/parenteral application. A light-sensitive compound known as photosensitizer (PS) interacts with light and molecular oxygen to generate reactive oxygen species (ROS), which promote cell death by oxidative stress through PDT approaches. Here, for the first time, we demonstrate the antileishmanial effect of tetra-cationic porphyrins with peripheral Pt(II)- and Pd(II)-polypyridyl complexes using PDT. The isomeric tetra-cationic porphyrins in the meta positions, 3-PtTPyP, and 3-PdTPyP, exhibited the highest antiparasitic activity against promastigote (IC50-pro = 41.8 nM and 46.1 nM, respectively) and intracellular amastigote forms (IC50-ama = 27.6 nM and 38.8 nM, respectively) of L. amazonensis under white light irradiation (72 J cm-2) with high selectivity (SI > 50) for both forms of parasites regarding mammalian cells. In addition, these PS induced the cell death of parasites principally by a necrotic process in the presence of white light by mitochondrial and acidic compartments accumulation. This study showed that porphyrins 3-PtTPyP and 3-PdTPyP displayed a promising antileishmanial-PDT activity with potential application for cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Irwin A P Linares
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Maricely Sánchez Uría
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil; Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marcia A S Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Angela M A Velásquez
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Souza SO, Raposo BL, Sarmento-Neto JF, Rebouças JS, Macêdo DPC, Figueiredo RCBQ, Santos BS, Freitas AZ, Cabral Filho PE, Ribeiro MS, Fontes A. Photoinactivation of Yeast and Biofilm Communities of Candida albicans Mediated by ZnTnHex-2-PyP4+ Porphyrin. J Fungi (Basel) 2022; 8:jof8060556. [PMID: 35736039 PMCID: PMC9225021 DOI: 10.3390/jof8060556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is the main cause of superficial candidiasis. While the antifungals available are defied by biofilm formation and resistance emergence, antimicrobial photodynamic inactivation (aPDI) arises as an alternative antifungal therapy. The tetracationic metalloporphyrin Zn(II) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin (ZnTnHex-2-PyP4+) has high photoefficiency and improved cellular interactions. We investigated the ZnTnHex-2-PyP4+ as a photosensitizer (PS) to photoinactivate yeasts and biofilms of C. albicans strains (ATCC 10231 and ATCC 90028) using a blue light-emitting diode. The photoinactivation of yeasts was evaluated by quantifying the colony forming units. The aPDI of ATCC 90028 biofilms was assessed by the MTT assay, propidium iodide (PI) labeling, and scanning electron microscopy. Mammalian cytotoxicity was investigated in Vero cells using MTT assay. The aPDI (4.3 J/cm2) promoted eradication of yeasts at 0.8 and 1.5 µM of PS for ATCC 10231 and ATCC 90028, respectively. At 0.8 µM and same light dose, aPDI-treated biofilms showed intense PI labeling, about 89% decrease in the cell viability, and structural alterations with reduced hyphae. No considerable toxicity was observed in mammalian cells. Our results introduce the ZnTnHex-2-PyP4+ as a promising PS to photoinactivate both yeasts and biofilms of C. albicans, stimulating studies with other Candida species and resistant isolates.
Collapse
Affiliation(s)
- Sueden O. Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (B.L.R.); (P.E.C.F.)
- Correspondence: (S.O.S.); (A.F.)
| | - Bruno L. Raposo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (B.L.R.); (P.E.C.F.)
| | - José F. Sarmento-Neto
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (J.F.S.-N.); (J.S.R.)
| | - Júlio S. Rebouças
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil; (J.F.S.-N.); (J.S.R.)
| | - Danielle P. C. Macêdo
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (D.P.C.M.); (B.S.S.)
| | - Regina C. B. Q. Figueiredo
- Departamento de Microbiologia, Instituto Aggeu Magalhães—Fundação Oswaldo Cruz (IAM-FIOCRUZ), Recife 50740-465, PE, Brazil;
| | - Beate S. Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife 50740-520, PE, Brazil; (D.P.C.M.); (B.S.S.)
| | - Anderson Z. Freitas
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo 05508-000, SP, Brazil; (A.Z.F.); (M.S.R.)
| | - Paulo E. Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (B.L.R.); (P.E.C.F.)
| | - Martha S. Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo 05508-000, SP, Brazil; (A.Z.F.); (M.S.R.)
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife 50670-901, PE, Brazil; (B.L.R.); (P.E.C.F.)
- Correspondence: (S.O.S.); (A.F.)
| |
Collapse
|
6
|
Espitia-Almeida F, Díaz-Uribe C, Vallejo W, Gómez-Camargo D, Bohórquez ARR, Zarate X, Schott E. Photophysical characterization and in vitro anti-leishmanial effect of 5,10,15,20-tetrakis(4-fluorophenyl) porphyrin and the metal (Zn(II), Sn(IV), Mn(III) and V(IV)) derivatives. Biometals 2022; 35:159-171. [PMID: 34993713 DOI: 10.1007/s10534-021-00357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 11/29/2021] [Indexed: 11/24/2022]
Abstract
In this report 5 compounds were synthesized and structural and their photophysical characterization was performed (ΦΔ and Φf). Furthermore, in this in vitro study, their biological activity against Leishmania panamensis was evaluated. The photophysical behavior of these compounds was measured and high ΦΔ and low Φf was observed. Besides, DFT quantum calculations on the electronic structures were performed. Finally, the biological activity was determined by means of the compounds capacity to inhibit the viability of parasites using the MTT assay. The inclusion of the metal ions substantially modified the photophysical and biological properties in comparison with the free metal porphyrin (1). In fact, Zn2+ porphyrin derivative (2) showed a marked decrease of Φf and increase of ΦΔ. In this sense, using TDDFT approaches, a luminescent process for Sn4+ derivative (3) was described, where emissive states involve the ML-LCT transition. So, this led to a decrease in the singlet oxygen production (0.82-0.67). Biological results showed that all compounds inhibit the viability of L. panamensis with high efficiency; the decrease in the viability was greater as the concentration of exposure increased. Finally, under light irradiation the IC50 of L. panamensis against the Zn(II)-porphyrin (2) and V(IV)-porphyrin (5) was lower than the IC50 of the Glucantime control (IC50 = 2.2 and 6.95 μM Vs IC50 = 12.7 μM, respectively). We showed that the use of porphyrin and metalloporphyrin-type photosensitizers with exceptional photophysical properties can be successful in photodynamic therapy (PDT) against L. panamensis, being the diamagnetic ion Zn2+ a candidate for the preparation of metalloporphyrins with high singlet oxygen production.
Collapse
Affiliation(s)
- Fabián Espitia-Almeida
- Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia. .,Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia.
| | - Carlos Díaz-Uribe
- Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia
| | - William Vallejo
- Grupo de Investigación en Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia.
| | - Doris Gómez-Camargo
- Grupo de Investigación UNIMOL, Universidad de Cartagena, Cartagena, Colombia
| | - Arnold R Romero Bohórquez
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
7
|
Souza TH, Sarmento-Neto JF, Souza SO, Raposo BL, Silva BP, Borges CP, Santos BS, Cabral Filho PE, Rebouças JS, Fontes A. Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Espitia-Almeida F, Diaz-Uribe C, Vallejo W, Gómez-Camargo D, Romero Bohórquez AR, Linares-Flores C. Photophysical study and in vitro approach against Leishmania panamensis of dicloro-5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV). F1000Res 2021; 10:379. [PMID: 34804494 PMCID: PMC8581593 DOI: 10.12688/f1000research.52433.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Photodynamic therapy activity against different biological systems has been reported for porphyrins. Porphyrin modifications through peripheral groups and/or by metal insertion inside the ring are main alternatives for the improvement of its photo-physical properties. In this study, we synthesized and characterized 5,10,15,20-tetrakis(4-bromophenyl)porphyrin and the dicloro-5,10,15,20-tetrakis(4-bromophenyl)porphyrinato Sn(IV). Methods: Metal-free porphyrin was synthesized using the Alder method, while the Sn(IV)-porphyrin complex was prepared by combining metal-free porphyrin with stannous chloride in DMF; the reaction yields were 47% and 64% respectively. Metal-free porphyrin was characterized by UV-Vis, FT-IR, ESI-mass spectrometry and
13C-NMR. Additionally, the Sn(IV) -porphyrin complex was characterized using UV-Vis and FT-IR. Cyclic voltammetry tests in four different solvents. The fluorescence quantum yield (Φ
f) was measured using fluorescein as a standard, the singlet oxygen quantum yield (Φ
D) was estimated using the standard 5,10,15,20-(tetraphenyl)porphyrin (H2TPP) and the quencher of singlet oxygen 1,3-diphenylisobenzofuran (DPBF). Results: UV-Vis assay showed typical Q and Soret bands for porphyrin and its metallo-porphyrin complex. Compounds showed photoluminescence at the visible range of electromagnetic spectrum. The inclusion of the metal in the porphyrin core changed the Φ
f from 0.15 to 0.05 and the Φ
D increased from 0.55 to 0.59. Finally, the effect of the compounds on the viability of
L. panamensis was evaluated by means of the MTT test. The results showed that both compounds decreased the viability of the parasite; this inhibitory activity was greater under light irradiation; the porphyrin compound had IC
50 of 16.5 μM and the Sn(IV)-porphyrin complex had IC
50 of 19.2 μM. Conclusion: The compounds were synthesized efficiently, their characterization was carried out by different spectroscopy techniques and their own signals were evidenced for both structures, both compounds decreased the cell viability of
L. panamensis.
Collapse
Affiliation(s)
- Fabián Espitia-Almeida
- Grupo de Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia.,Grupo de Investigación UNIMOL, Universidad de Cartagena, Cartagena, Colombia.,Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Carlos Diaz-Uribe
- Grupo de Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia
| | - William Vallejo
- Grupo de Fotoquímica y Fotobiología, Universidad del Atlántico, Barranquilla, Colombia
| | - Doris Gómez-Camargo
- Grupo de Investigación UNIMOL, Universidad de Cartagena, Cartagena, Colombia
| | - Arnold R Romero Bohórquez
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Parque Tecnológico Guatiguará, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Cristian Linares-Flores
- Facultad de Ingeniería, Centro de Química Orgánica y Productos Naturales, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
9
|
Youf R, Müller M, Balasini A, Thétiot F, Müller M, Hascoët A, Jonas U, Schönherr H, Lemercier G, Montier T, Le Gall T. Antimicrobial Photodynamic Therapy: Latest Developments with a Focus on Combinatory Strategies. Pharmaceutics 2021; 13:1995. [PMID: 34959277 PMCID: PMC8705969 DOI: 10.3390/pharmaceutics13121995] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a fundamental tool in modern therapeutics, notably due to the expanding versatility of photosensitizers (PSs) and the numerous possibilities to combine aPDT with other antimicrobial treatments to combat localized infections. After revisiting the basic principles of aPDT, this review first highlights the current state of the art of curative or preventive aPDT applications with relevant clinical trials. In addition, the most recent developments in photochemistry and photophysics as well as advanced carrier systems in the context of aPDT are provided, with a focus on the latest generations of efficient and versatile PSs and the progress towards hybrid-multicomponent systems. In particular, deeper insight into combinatory aPDT approaches is afforded, involving non-radiative or other light-based modalities. Selected aPDT perspectives are outlined, pointing out new strategies to target and treat microorganisms. Finally, the review works out the evolution of the conceptually simple PDT methodology towards a much more sophisticated, integrated, and innovative technology as an important element of potent antimicrobial strategies.
Collapse
Affiliation(s)
- Raphaëlle Youf
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Max Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Ali Balasini
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Franck Thétiot
- Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 6521, Université de Brest (UBO), CS 93837, 29238 Brest, France
| | - Mareike Müller
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Alizé Hascoët
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (A.B.); (U.J.)
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro- and Nanochemistry and (Bio)Technology of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany; (M.M.); (M.M.)
| | - Gilles Lemercier
- Coordination Chemistry Team, Unité Mixte de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7312, Institut de Chimie Moléculaire de Reims (ICMR), Université de Reims Champagne-Ardenne, BP 1039, CEDEX 2, 51687 Reims, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
- CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200 Brest, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, F-29200 Brest, France; (R.Y.); (A.H.); (T.M.)
| |
Collapse
|
10
|
Varzandeh M, Mohammadinejad R, Esmaeilzadeh-Salestani K, Dehshahri A, Zarrabi A, Aghaei-Afshar A. Photodynamic therapy for leishmaniasis: Recent advances and future trends. Photodiagnosis Photodyn Ther 2021; 36:102609. [PMID: 34728420 DOI: 10.1016/j.pdpdt.2021.102609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Leishmaniasis has infected more than 12 million people worldwide. This neglected tropical disease, causing 20,000-30,000 deaths per year, is a global health problem. The emergence of resistant parasites and serious side effects of conventional therapies has led to the search for less toxic and non-invasive alternative treatments. Photodynamic therapy is a promising therapeutic strategy to produce reactive oxygen species for the treatment of leishmaniasis. In this regard, natural and synthetic photosensitizers such as curcumin, hypericin, 5-aminolevulinic acid, phthalocyanines, phenothiazines, porphyrins, chlorins and nanoparticles have been applied. In this review, the recent advances on using photodynamic therapy for treating Leishmania species have been reviewed.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Fr. R.Kreutzwaldi 1, EE51014 Tartu, Estonia
| | - Ali Dehshahri
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Abbas Aghaei-Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
Conway-Kenny R, Ferrer-Ugalde A, Careta O, Cui X, Zhao J, Nogués C, Núñez R, Cabrera-González J, Draper SM. Ru(ii) and Ir(iii) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT. Biomater Sci 2021; 9:5691-5702. [PMID: 34264257 DOI: 10.1039/d1bm00730k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
Collapse
Affiliation(s)
- Robert Conway-Kenny
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| | - Albert Ferrer-Ugalde
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | - Oriol Careta
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Xiaoneng Cui
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. and State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, E208 Western Campus, 2 Ling-Gong Road, Dalian 116012, P. R. China
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, E-08193-Bellaterra, Barcelona, Spain.
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193-Bellatera, Barcelona, Spain
| | | | - Sylvia M Draper
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland.
| |
Collapse
|
12
|
Espitia-Almeida F, Díaz-Uribe C, Vallejo W, Peña O, Gómez-Camargo D, Bohórquez ARR, Zarate X, Schott E. Photodynamic effect of 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin and (Zn2+ and Sn4+) derivatives against Leishmania spp in the promastigote stage: experimental and DFT study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01702-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Souza THS, Andrade CG, Cabral FV, Sarmento-Neto JF, Rebouças JS, Santos BS, Ribeiro MS, Figueiredo RCBQ, Fontes A. Efficient photodynamic inactivation of Leishmania parasites mediated by lipophilic water-soluble Zn(II) porphyrin ZnTnHex-2-PyP 4. Biochim Biophys Acta Gen Subj 2021; 1865:129897. [PMID: 33811942 DOI: 10.1016/j.bbagen.2021.129897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Photodynamic inactivation (PDI) is emerging as a promising alternative for cutaneous leishmaniasis (CL). The chemotherapy currently used presents adverse effects and cases of drug resistance have been reported. ZnTnHex-2-PyP4+ is a porphyrin with a high potential as a photosensitizer (PS) for PDI, due to its photophysical properties, structural stability, and cationic/amphiphilic character that can enhance interaction with cells. This study aimed to investigate the photodynamic effects mediated by ZnTnHex-2-PyP4+ on Leishmania parasites. METHODS ZnTnHex-2-PyP4+ stability was evaluated using accelerated solvolysis conditions. The photodynamic action on promastigotes was assessed by (i) viability assays, (ii) mitochondrial membrane potential evaluation, and (iii) morphological analysis. The PS-promastigote interaction was studied. PDI on amastigotes and the cytotoxicity on macrophages were also analyzed. RESULTS ZnTnHex-2-PyP4+, under submicromolar concentration, led to immediate inactivation of more than 95% of promastigotes. PDI promoted intense mitochondrial depolarization, loss of the fusiform shape, and plasma membrane wrinkling in promastigotes. Fluorescence microscopy revealed a punctate PS labeling in the parasite cytoplasm. PDI also led to reductions of ca. 64% in the number of amastigotes/macrophage and 70% in the infection index after a single treatment session. No noteworthy toxicity was observed on mammalian cells. CONCLUSIONS ZnTnHex-2-PyP4+ is stable against demetallation and more efficient as PS than the ethyl analogue ZnTE-2-PyP4+, indicating readiness for evaluation in in vivo studies as an alternative approach to CL. GENERAL SIGNIFICANCE This report highlighted promising photodynamic effects mediated by ZnTnHex-2-PyP4+ on Leishmania parasites, opening up perspectives for applications in CL pre-clinical assays and PDI of other microorganisms.
Collapse
Affiliation(s)
- Tiago H S Souza
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil; Departamento de Microbiologia, Instituto Aggeu Magalhães- Fundação Oswaldo Cruz, Recife, PE, Brazil
| | - Camila G Andrade
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Fernanda V Cabral
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP, Brazil
| | - José F Sarmento-Neto
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Júlio S Rebouças
- Departamento de Química, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martha S Ribeiro
- Centro de Lasers e Aplicações, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP), São Paulo, SP, Brazil
| | - Regina C B Q Figueiredo
- Departamento de Microbiologia, Instituto Aggeu Magalhães- Fundação Oswaldo Cruz, Recife, PE, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
14
|
Lima NMA, Bezerra TT, Almeida MO, Rodrigues NLDC, Braga CHC, Miranda JIS, Ribeiro VGP, Guimarães GDF, Teixeira MJ, Lomonaco D, Mele G, Mazzetto SE. Photodynamic effect of palladium porphyrin derived from cashew nut shell liquid against promastigote forms of Leishmania braziliensis. Photodiagnosis Photodyn Ther 2020; 33:102083. [PMID: 33160063 DOI: 10.1016/j.pdpdt.2020.102083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/26/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Cutaneous leishmaniasis (CL) is a neglected tropical disease (NTD), endemic mainly in low-income countries that lack adequate basic health care. The emergence of resistant parasites to pentavalent antimonials has led to the search for new treatments for CL. Photodynamic therapy (PDT) is a promising non-invasive and less toxic alternative for the treatment of CL. The present work describes the synthesis, characterization and photodynamic effect against CL of a new metalloporphyrin Pd (II) meso-tetra[4-(2-(3-n-pentadecylphenoxy)ethoxy]phenylporphyrin (PdP) derived from the cashew nut shell liquid (CNSL). The PdP complex presented a singlet oxygen quantum yield of 0.49, favoring a type II photochemical reaction. The results of the photodynamic experiment carried out with PdP on the promastigote forms of Leishmania braziliensis indicated a mortality percentage of 70 % of the cells when compared to the control after exposure to blue light (λ = 420 nm). Besides this, the metalloporphyrin PdP did not show considerable toxicity to macrophages, indicating the cell viability of the compound. Therefore, this metalloporphyrin derived from biomass represents an interesting alternative as a potential therapeutic drug for the treatment of CL through PDT, especially for patients with intolerance to the chemotherapeutic drugs currently available.
Collapse
Affiliation(s)
- Nayane Maria Amorim Lima
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Thayllan Teixeira Bezerra
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Mayara Oliveira Almeida
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Naya Lúcia de Castro Rodrigues
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Campus do Porangabuçu, 60430-350, Fortaleza, CE, Brazil
| | | | | | - Viviane Gomes Pereira Ribeiro
- Institute of Exact Sciences and Nature (ICEN), University of International Integration of Afro-Brazilian Lusophony (UNILAB), 62790-000 Redencao, Ceara, Brazil
| | | | - Maria Jânia Teixeira
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Campus do Porangabuçu, 60430-350, Fortaleza, CE, Brazil
| | - Diego Lomonaco
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| | - Giuseppe Mele
- Department of Engineering for Innovation, University of Salento, Via Arnesano, 73100 Lecce, Italy.
| | - Selma Elaine Mazzetto
- Laboratory of Products and Process Technology (LPT), Federal University of Ceará (UFC), Campus do Pici 60455-900, Fortaleza, Ceara, Brazil
| |
Collapse
|