1
|
Xie JQ, Wang BX, Liang RX, Jia YX. Copper-catalyzed asymmetric 1,2-arylboration of enamines: access to chiral borate-containing 3,3'-disubstituted isoindolinones. Org Biomol Chem 2024. [PMID: 39005048 DOI: 10.1039/d4ob00896k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
An enantioselective copper-catalyzed 1,2-arylboration reaction of enamines has been developed by employing (R)-xyl-BINAP as a chiral ligand. A number of chiral borate-containing 3,3'-disubstituted isoindolinones were obtained in moderate to good yields and good to excellent enantioselectivities from the reactions of N-(o-iodobenzoyl)enamines and bis(pinacolato)diboron (B2pin2) under mild reaction conditions. Synthetic transformations of the products were conducted to demonstrate the practicality of this reaction.
Collapse
Affiliation(s)
- Jia-Qi Xie
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Bing-Xia Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China.
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Monaco G, Tiffner M, Di Mola A, Herrebout W, Waser M, Massa A. Correction: Monaco et al. Chiral Phase Transfer Catalysis in the Asymmetric Synthesis of a 3,3-Disubstituted Isoindolinone and Determination of Its Absolute Configuration by VCD Spectroscopy. Molecules 2020, 25, 2272. Molecules 2023; 28:molecules28114272. [PMID: 37299043 DOI: 10.3390/molecules28114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 06/12/2023] Open
Abstract
In this note, we report a correction to the published article, Molecules2020, 25, 2272 [...].
Collapse
Affiliation(s)
- Guglielmo Monaco
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Maximilian Tiffner
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Antonia Di Mola
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Wouter Herrebout
- Department of Chemistry, University of Antwerp, B-2020 Antwerp, Belgium
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Antonio Massa
- Dipartimento di Chimica e Biologia, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
3
|
Waser M, Winter M, Mairhofer C. (Thio)urea containing chiral ammonium salt catalysts. CHEM REC 2022:e202200198. [PMID: 36175162 DOI: 10.1002/tcr.202200198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022]
Abstract
(Thio)-urea-containing bifunctional quaternary ammonium salts emerged as powerful non-covalently interacting organocatalysts over the course of the last decade. The most commonly employed catalysts in this field are either based on Cinchona alkaloids, α-amino acids, or trans-cyclohexane-1,2-diamine. Our group has been heavily engaged in the design and use of such catalysts, i. e. trans-cyclohexane-1,2-diamine-based ones for around 10 years now, and it is therefore the intention of this short personal account to provide an overview of the, at least in our opinion, most significant and pioneering achievements in this field by looking on catalyst design and asymmetric method development, with a special focus on our own contributions.
Collapse
Affiliation(s)
- Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| | - Michael Winter
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| | - Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040, Linz, Austria
| |
Collapse
|
4
|
Di Mola A, Nicastro G, Serusi L, Filosa R, Waser M, Massa A. Scalable (Enantioselective) Syntheses of Novel 3-Methylated Analogs of Pazinaclone, (S)-PD172938 and Related Biologically Relevant Isoindolinones. Molecules 2022; 27:molecules27175647. [PMID: 36080411 PMCID: PMC9458024 DOI: 10.3390/molecules27175647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, we report the application of an efficient and practical K2CO3 promoted cascade reaction of 2-acetylbenzonitrile in the synthesis of novel 3-methylated analogs of Pazinaclone and PD172938, belonging to isoindolinones heterocyclic class bearing a tetrasubstituted stereocenter. Organocatalytic asymmetric synthesis of the key intermediate and its transformation into highly enantioenriched 3-methylated analog of (S)-PD172938 was also developed. These achievements can be of particular interest also for medicinal chemistry, since the methyl group is a very useful structural modification in the rational design of new and more effective bioactive compounds.
Collapse
Affiliation(s)
- Antonia Di Mola
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: (A.D.M.); (A.M.)
| | - Giorgia Nicastro
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Lorenzo Serusi
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Rosanna Filosa
- Dipartimento di Scienze e Tecnologia, Università degli Studi del Sannio, Via De Sanctis, 82100 Benevento, Italy
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
| | - Antonio Massa
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: (A.D.M.); (A.M.)
| |
Collapse
|
5
|
Liu M, Li W, Huang M, Yan Y, Li M, Cao L, Zhang X. Enantioselective intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones provided isoindolinone fused tetrahydro β-carbolines with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- Department of Chemistry, Xihua University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Eitzinger A, Otevrel J, Haider V, Macchia A, Massa A, Faust K, Spingler B, Berkessel A, Waser M. Enantioselective Bifunctional Ammonium Salt-Catalyzed Syntheses of 3-CF 3S-, 3-RS-, and 3-F-Substituted Isoindolinones. Adv Synth Catal 2021; 363:1955-1962. [PMID: 33897314 PMCID: PMC8050839 DOI: 10.1002/adsc.202100029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Indexed: 01/12/2023]
Abstract
We herein report the ammonium salt-catalyzed synthesis of chiral 3,3-disubstituted isoindolinones bearing a heteroatom functionality in the 3-position. A broad variety of differently substituted CF3S- and RS-derivatives were obtained with often high enantioselectivities when using Maruoka's bifunctional chiral ammonium salt catalyst. In addition, a first proof-of-concept for the racemic synthesis of the analogous F-containing products was obtained as well, giving access to one of the rare examples of a fairly stable α-F-α-amino acid derivative.
Collapse
Affiliation(s)
- Andreas Eitzinger
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Jan Otevrel
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
- Department of Chemical DrugsFaculty of PharmacyMasaryk UniversityPalackeho 1946/1612 00BrnoCzechia
| | - Victoria Haider
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Antonio Macchia
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Antonio Massa
- Dipartimento di Chimica e BiologiaUniversità di SalernoVia Giovanni Paolo II, 13284084FiscianoSAItaly
| | - Kirill Faust
- Institute of CatalysisJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Albrecht Berkessel
- Department of ChemistryCologne UniversityGreinstrasse 450939CologneGermany
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|