1
|
Myburgh PJ, Sai KKS. Development and Optimization of 11C-Labeled Radiotracers: A Review of the Modern Quality Control Design Process. ACS Pharmacol Transl Sci 2023; 6:1616-1631. [PMID: 37974626 PMCID: PMC10644505 DOI: 10.1021/acsptsci.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Introduction - Several 11C-tracers have demonstrated high potential in early diagnostic PET imaging applications of neurodegenerative diseases including Alzheimer's and Parkinson's disease. These radiotracers often track critical biomarkers in disease pathogenesis such as tau fibrils ([11C]PBB3) or β-amyloid plaques ([11C]PiB) associated with such diseases. Purpose - The short review aims to serve as a guideline in the future development of radiotracers for students, postdocs and/or new radiochemists who will be synthesizing clinical grade or novel research 11C-tracers, including knowledge of regulatory requirements. We aim to bridge the gap between novel and established 11C-tracer quality control (QC) processes through exploring the design process and regulatory requirements for 11C-pharmaceuticals. Methods - A literature survey was undertaken to identify articles with a detailed description of the QC methodology and characterization for each of the sections of the review. Overview - First a general summary of 11C-tracer production was presented; this was used to establish possible places for contamination or assurances for a sterile final product. The key mandated QC analyses for clinical use were then discussed. Further, we assessed the QC methods used for established 11C-tracers and then reviewed the routine QC tests for preclinical translational and validation studies. Therefore, both mandated QC methods for clinical and preclinical animal studies were reviewed. Last, some examples of optimization and automation were reviewed, and implications of the QC practices associated with such procedures were considered. Conclusion - All of the common QC parameters associated with 11C-tracers under clinical and preclinical settings (along with a few exceptions) were discussed in detail. While it is important to establish standard, peer-reviewed QC testing protocols for a novel 11C-tracer entering the clinical umbrella, equal importance is needed on preclinical applications to address credibility and repeatability for the study.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| | - Kiran Kumar Solingapuram Sai
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
- Department
of Radiology, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
2
|
Bhoopal B, Gollapelli KK, Damuka N, Miller M, Krizan I, Bansode A, Register T, Frye BM, Kim J, Mintz A, Orr M, Craft S, Whitlow C, Lockhart SN, Shively CA, Solingapuram Sai KK. Preliminary PET Imaging of Microtubule-Based PET Radioligand [ 11C]MPC-6827 in a Nonhuman Primate Model of Alzheimer's Disease. ACS Chem Neurosci 2023; 14:3745-3751. [PMID: 37724996 PMCID: PMC10966409 DOI: 10.1021/acschemneuro.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The microtubule (MT) instability observed in Alzheimer's disease (AD) is commonly attributed to hyperphosphorylation of the MT-associated protein, tau. In vivo PET imaging offers an opportunity to gain critical information about MT changes with the onset and development of AD and related dementia. We developed the first brain-penetrant MT PET ligand, [11C]MPC-6827, and evaluated its in vivo imaging utility in vervet monkeys. Consistent with our previous in vitro cell uptake and in vivo rodent imaging experiments, [11C]MPC-6827 uptake increased with MT destabilization. Radioactive uptake was inversely related to (cerebrospinal fluid) CSF Aβ42 levels and directly related to age in a nonhuman primate (NHP) model of AD. Additionally, in vitro autoradiography studies also corroborated PET imaging results. Here, we report the preliminary results of PET imaging with [11C]MPC-6827 in four female vervet monkeys with high or low CSF Aβ42 levels, which have been shown to correlate with the Aβ plaque burden, similar to humans.
Collapse
Affiliation(s)
- Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Krishna Kumar Gollapelli
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Avinash Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Thomas Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Brett M Frye
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jeongchul Kim
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University School of Medicine, New York, New York 10032, United States
| | - Miranda Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Christopher Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Samuel N Lockhart
- Department of Gerontology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Carol A Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | | |
Collapse
|
3
|
Bansode AH, Bhoopal B, Gollapelli KK, Damuka N, Krizan I, Miller M, Craft S, Mintz A, Solingapuram Sai KK. Binding Parameters of [ 11C]MPC-6827, a Microtubule-Imaging PET Radiopharmaceutical in Rodents. Pharmaceuticals (Basel) 2023; 16:495. [PMID: 37111252 PMCID: PMC10140836 DOI: 10.3390/ph16040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Impairment and/or destabilization of neuronal microtubules (MTs) resulting from hyper-phosphorylation of the tau proteins is implicated in many pathologies, including Alzheimer's disease (AD), Parkinson's disease and other neurological disorders. Increasing scientific evidence indicates that MT-stabilizing agents protect against the deleterious effects of neurodegeneration in treating AD. To quantify these protective benefits, we developed the first brain-penetrant PET radiopharmaceutical, [11C]MPC-6827, for in vivo quantification of MTs in rodent and nonhuman primate models of AD. Mechanistic insights revealed from recently reported studies confirm the radiopharmaceutical's high selectivity for destabilized MTs. To further translate it to clinical settings, its metabolic stability and pharmacokinetic parameters must be determined. Here, we report in vivo plasma and brain metabolism studies establishing the radiopharmaceutical-binding constants of [11C]MPC-6827. Binding constants were extrapolated from autoradiography experiments; pretreatment with a nonradioactive MPC-6827 decreased the brain uptake >70%. It exhibited ideal binding characteristics (typical of a CNS radiopharmaceutical) including LogP (2.9), Kd (15.59 nM), and Bmax (11.86 fmol/mg). Most important, [11C]MPC-6827 showed high serum and metabolic stability (>95%) in rat plasma and brain samples.
Collapse
Affiliation(s)
- Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | | | | | - Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Akiva Mintz
- Department of Radiology, Columbia Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
4
|
Damuka N, Bashetti N, Mintz A, Bansode AH, Miller M, Krizan I, Furdui C, Bhoopal B, Gollapelli KK, Shanmukha Kumar JV, Deep G, Dugan G, Cline M, Solingapuram Sai KK. [ 18F]KS1, a novel ascorbate-based ligand images ROS in tumor models of rodents and nonhuman primates. Biomed Pharmacother 2022; 156:113937. [PMID: 36411624 PMCID: PMC11017304 DOI: 10.1016/j.biopha.2022.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Over production of reactive oxygen species (ROS) caused by altered redox regulation of signaling pathways is common in many types of cancers. While PET imaging is recognized as the standard tool for cancer imaging, there are no clinically-approved PET radiotracers for ROS-imaging in cancer diagnosis and treatment. An ascorbate-based radio ligand promises to meet this urgent need. Our laboratory recently synthesized [18F] KS1, a fluoroethoxy furanose ring-containing ascorbate derivative, to track ROS in prostate tumor-bearing mice. Here we report cell uptake assays of [18F]KS1 with different ROS-regulating agents, PET imaging in head and neck squamous cell carcinoma (HNSCC) mice, and doxorubicin-induced rats; PET imaging in healthy and irradiated hepatic tumor-bearing rhesus to demonstrate its translational potential. Our preliminary evaluations demonstrated that KS1 do not generate ROS in tumor cells at tracer-level concentrations and tumor-killing properties at pharmacologic doses. [18F]KS1 uptake was low in HNSCC pretreated with ROS blockers, and high with ROS inducers. Tumors in high ROS-expressing SCC-61 took up significantly more [18F]KS1 than rSCC-61 (low-ROS expressing HNSCC); high uptake in doxorubicin-treated rats compared to saline-treated controls. Rodent biodistribution and PET imaging of [18F]KS1 in healthy rhesus monkeys demonstrated its favorable safety, pharmacokinetic properties with excellent washout profile, within 3.0 h of radiotracer administration. High uptake of [18F]KS1 in liver tumor tissues of the irradiated hepatic tumor-bearing monkey showed target selectivity. Our strong data in vitro, in vivo, and ex vivo here supports the high translational utility of [18F]KS1 to image ROS.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Nagaraju Bashetti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Akiva Mintz
- Department of Radiology, Columbia University, New York, NY, United States
| | - Avinash H Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bhuvanachandra Bhoopal
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | | - J V Shanmukha Kumar
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Greg Dugan
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mark Cline
- Department of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | | |
Collapse
|
5
|
Damuka N, Orr ME, Bansode AH, Krizan I, Miller M, Lee J, Macauley SL, Whitlow CT, Mintz A, Craft S, Solingapuram Sai KK. Preliminary mechanistic insights of a brain-penetrant microtubule imaging PET ligand in a tau-knockout mouse model. EJNMMI Res 2022; 12:41. [PMID: 35881263 PMCID: PMC9325934 DOI: 10.1186/s13550-022-00912-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Microtubules (MTs) are critical for cell structure, function, and survival. MT instability may contribute to Alzheimer's disease (AD) pathogenesis as evidenced by persistent negative regulation (phosphorylation) of the neuronal microtubule-associated protein tau. Hyperphosphorylated tau, not bound to MTs, forms intraneuronal pathology that correlates with dementia and can be tracked using positron emission tomography (PET) imaging. The contribution of MT instability in AD remains unknown, though it may be more proximal to neuronal dysfunction than tau accumulation. Our lab reported the first brain-penetrant MT-based PET ligand, [11C]MPC-6827, and its PET imaging with this ligand in normal rodents and non-human primates demonstrated high brain uptake and excellent pharmacokinetics. Target engagement and mechanism of action using in vitro, in vivo, and ex vivo methods were evaluated here. METHODS In vitro cell uptake assay was performed in SH-SY5Y neuronal cells with [11C]MPC-6827, with various MT stabilizing and destabilizing agents. To validate the in vitro results, wild type (WT) mice (n = 4) treated with a brain-penetrant MT stabilizing drug (EpoD) underwent microPET/CT brain imaging with [11C]MPC-6827. To determine the influence of tau protein on radiotracer binding in the absence of protein accumulation, we utilized tau knockout (KO) mice. In vivo microPET imaging, ex vivo biodistribution, and autoradiography studies were performed in tau KO and WT mice (n = 6/group) with [11C]MPC-6827. Additionally, α, β, and acetylated tubulin levels in both brain samples were determined using commercially available cytoskeleton-based MT kit and capillary electrophoresis immunoblotting assays. RESULTS Cell uptake demonstrated higher radioactive uptake with MT destabilizing agents and lower uptake with stabilizing agents compared to untreated cells. Similarly, acute treatment with EpoD in WT mice decreased [11C]MPC-6827 brain uptake, assessed with microPET/CT imaging. Compared to WT mice, tau KO mice expressed significantly lower β tubulin, which contains the MPC-6827 binding domain, and modestly lower levels of acetylated α tubulin, indicative of unstable MTs. In vivo imaging revealed significantly higher [11C]MPC-6827 uptake in tau KOs than WT, particularly in AD-relevant brain regions known to express high levels of tau. Ex vivo post-PET biodistribution and autoradiography confirmed the in vivo results. CONCLUSIONS Collectively, our data indicate that [11C]MPC-6827 uptake inversely correlates with MT stability and may better reflect the absence of tau than total tubulin levels. Given the radiotracer binding does not require the presence of aggregated tau, we hypothesize that [11C]MPC-6827 may be particularly useful in preclinical stages of AD prior to tau deposition. Our study provides immediate clarity on high uptake of the MT-based radiotracer in AD brains, which directly informs clinical utility in MT/tau-based PET imaging studies.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Miranda E. Orr
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Jillian Lee
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | - Shannon L. Macauley
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | | | - Akiva Mintz
- Department of Radiology, Columbia Medical Center, New York, NY 10032 USA
| | - Suzanne Craft
- Department of Gerontology, Wake Forest School of Medicine, Winston Salem, NC 27157 USA
| | | |
Collapse
|
6
|
Damuka N, Martin TJ, Bansode AH, Krizan I, Martin CW, Miller M, Whitlow CT, Nader MA, Solingapuram Sai KK. Initial Evaluations of the Microtubule-Based PET Radiotracer, [11C]MPC-6827 in a Rodent Model of Cocaine Abuse. Front Med (Lausanne) 2022; 9:817274. [PMID: 35295607 PMCID: PMC8918945 DOI: 10.3389/fmed.2022.817274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeMicrotubules (MTs) are structural units made of α and β tubulin subunits in the cytoskeleton responsible for axonal transport, information processing, and signaling mechanisms—critical for healthy brain function. Chronic cocaine exposure affects the function, organization, and stability of MTs in the brain, thereby impairing overall neurochemical and cognitive processes. At present, we have no reliable, non-invasive methods to image MTs for cocaine use disorder (CUD). Recently we reported the effect of cocaine in patient-derived neuroblastoma SH-SY5Y cells. Here we report preliminary results of a potential imaging biomarker of CUD using the brain penetrant MT-based radiotracer, [11C]MPC-6827, in an established rodent model of cocaine self-administration (SA).MethodsCell uptake studies were performed with [11C]MPC-6827 in SH-SY5Y cells, treated with or without cocaine (n = 6/group) at 30 and 60 min incubations. MicroPET/CT brain scans were performed in rats at baseline and 35 days after cocaine self-administration and compared with saline-treated rats as controls (n = 4/sex). Whole-body post-PET biodistribution, plasma metabolite assay, and brain autoradiography were performed in the same rats from imaging.ResultsCocaine-treated SH-SY5Y cells demonstrated a ∼26(±4)% decrease in radioactive uptake compared to non-treated controls. Both microPET/CT imaging and biodistribution results showed lower (∼35 ± 3%) [11C]MPC-6827 brain uptake in rats that had a history of cocaine self-administration compared to the saline-treated controls. Plasma metabolite assays demonstrate the stability (≥95%) of the radiotracer in both groups. In vitro autoradiography also demonstrated lower radioactive uptake in cocaine rats compared to the control rats. [11C]MPC-6827’s in vitro SH-SY5Y neuronal cell uptake, in vivo positron emission tomography (PET) imaging, ex vivo biodistribution, and in vitro autoradiography results corroborated well with each other, demonstrating decreased radioactive brain uptake in cocaine self-administered rats versus controls. There were no significant differences either in cocaine intake or in [11C]MPC-6827 uptake between the male and female rats.ConclusionsThis project is the first to validate in vivo imaging of the MT-associations with CUD in a rodent model. Our initial observations suggest that [11C]MPC-6827 uptake decreases in cocaine self-administered rats and that it may selectively bind to destabilized tubulin units in the brain. Further longitudinal studies correlating cocaine intake with [11C]MPC-6827 PET brain measures could potentially establish the MT scaffold as an imaging biomarker for CUD, providing researchers and clinicians with a sensitive tool to better understand the biological underpinnings of CUD and tailor new treatments.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas J. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Avinash H. Bansode
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ivan Krizan
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Conner W. Martin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Mack Miller
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher T. Whitlow
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael A. Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States
- *Correspondence: Kiran Kumar Solingapuram Sai,
| |
Collapse
|
7
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Lindberg A, Mossine AV, Aliaga A, Hopewell R, Massarweh G, Rosa-Neto P, Shao X, Bernard-Gauthier V, Scott PJH, Vasdev N. Preliminary Evaluations of [ 11C]Verubulin: Implications for Microtubule Imaging With PET. Front Neurosci 2021; 15:725873. [PMID: 34566568 PMCID: PMC8456034 DOI: 10.3389/fnins.2021.725873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
[11C]Verubulin (a.k.a.[11C]MCP-6827), [11C]HD-800 and [11C]colchicine have been developed for imaging microtubules (MTs) with positron emission tomography (PET). The objective of this work was to conduct an in vivo comparison of [11C]verubulin for MT imaging in mouse and rat brain, as well as an in vitro study with this radiotracer in rodent and human Alzheimer’s Disease tissue. Our preliminary PET imaging studies of [11C]verubulin in rodents revealed contradictory results between mouse and rat brain uptake under pretreatment conditions. In vitro autoradiography with [11C]verubulin showed an unexpected higher uptake in AD patient tissue compared with healthy controls. We also conducted the first comparative in vivo PET imaging study with [11C]verubulin, [11C]HD-800 and [11C]colchicine in a non-human primate. [11C]Verubulin and [11C]HD-800 require pharmacokinetic modeling and quantification studies to understand the role of how these radiotracers bind to MTs before translation to human use.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Andrew V Mossine
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arturo Aliaga
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Robert Hopewell
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Vadim Bernard-Gauthier
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Effect of ethanol and cocaine on [ 11C]MPC-6827 uptake in SH-SY5Y cells. Mol Biol Rep 2021; 48:3871-3876. [PMID: 33880672 PMCID: PMC8172511 DOI: 10.1007/s11033-021-06336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/02/2021] [Indexed: 10/26/2022]
Abstract
Microtubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.
Collapse
|