1
|
Peng X, Li Y, Yu J, Gao Y, Zhao X, Jia N. Assessment of the impact of whey protein hydrolysate on myofibrillar proteins in surimi during repeated freeze-thaw cycles: Quality enhancement and antifreeze potential. Food Chem 2024; 460:140552. [PMID: 39047476 DOI: 10.1016/j.foodchem.2024.140552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The quality of surimi, widely used in processed seafood, is compromised by freeze-thaw cycles, leading to protein denaturation and oxidative degradation. The objective of this study is to explore the effects of adding natural whey peptide hydrolysate (WPH) on the myofibrillar proteins of repeatedly freeze-thawed surimi. Results indicated surimi treated with 15% WPH exhibited only a 128% increase in surface hydrophobicity and a maximum peroxide value of 7.84 μg/kg, significantly lower than the control group. Additionally, salt-soluble protein content, emulsification activity, and stability decreased with the increase in freeze-thaw cycles. With a 15% WPH offering the most significant protective effect, evidenced by reductions of only 25.02%, 42.52% and 37.02% in salt-soluble protein content, emulsification activity, and stability, respectively. These outcomes demonstrate that WPH effectively reduces protein denaturation during repeated freeze-thaw processes. Future research should explore the molecular mechanisms underlying WPH's protective effects and evaluate their applicability in other food systems.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China.
| | - Yunying Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Juan Yu
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Yonglin Gao
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Xinxin Zhao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| |
Collapse
|
2
|
Zeng X, Wang Y, Yang S, Liu Y, Li X, Liu D. The functionalities and applications of whey/whey protein in fermented foods: a review. Food Sci Biotechnol 2024; 33:769-790. [PMID: 38371680 PMCID: PMC10866834 DOI: 10.1007/s10068-023-01460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 02/20/2024] Open
Abstract
Whey, a major by-product of cheese production, is primarily composed of whey protein (WP). To mitigate environmental pollution, it is crucial to identify effective approaches for fully utilizing the functional components of whey or WP to produce high-value-added products. This review aims to illustrate the active substances with immunomodulatory, metabolic syndrome-regulating, antioxidant, antibacterial, and anti-inflammatory activities produced by whey or WP through fermentation processes, and summarizes the application and the effects of whey or WP on nutritional properties and health promotion in fermented foods. All these findings indicate that whey or WP can serve as a preservative, a source of high-protein dietary, and a source of physiologically active substance in the production of fermented foods. Therefore, expanding the use of whey or WP in fermented foods is of great importance for converting whey into value-added products, as well as reducing whey waste and potential contamination.
Collapse
Affiliation(s)
- Xiaorong Zeng
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yujie Wang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Shuda Yang
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Yijun Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| | - Xing Li
- Zhangye Water Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye, 734000 China
| | - Diru Liu
- Institute of Nutrition and Food Hygiene, School of Public Health, Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
3
|
Effects of dietary oat supplementation on carcass traits, muscle metabolites, amino acid profiles, and its association with meat quality of Small-tail Han sheep. Food Chem 2023; 411:135456. [PMID: 36669340 DOI: 10.1016/j.foodchem.2023.135456] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/04/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Oat supplementation of the ruminant diet can improve growth performance and meat quality traits, but the role of muscle metabolites has not been evaluated. This study aimed to establish whether oat grass supplementation (OS) of Small-tail Han sheep improved growth performance and muscle tissue metabolites that are associated with better meat quality and flavor. After 90-day, OS fed sheep had higher live-weight and carcass-weight, and lower carcass fat. Muscle metabolomics analysis showed that OS fed sheep had higher levels of taurine, l-carnitine, inosine-5'-monophospgate, cholic acid, and taurocholic acid, which are primarily involved in taurine and hypotaurine metabolism, purine metabolism, and bile acid biosynthesis and secretion, decreased fat accumulation and they promote functional or flavor metabolites. OS also increased muscle levels of amino acids that are attributed to better quality and flavorsome mutton. These findings provided further evidence for supplementing sheep with oat grass to improve growth performance and meat quality.
Collapse
|
4
|
Ciobanu MM, Manoliu DR, Ciobotaru MC, Anchidin BG, Matei M, Munteanu M, Frunză G, Murariu OC, Flocea EI, Boișteanu PC. The Influence of Sensory Characteristics of Game Meat on Consumer Neuroperception: A Narrative Review. Foods 2023; 12:foods12061341. [PMID: 36981266 PMCID: PMC10048761 DOI: 10.3390/foods12061341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Game meat contains bioactive compounds that directly influence the formation of a rich reservoir of flavor precursors that produce specific sensory properties. Quality is considered one of the most influential determinants of consumer behavior, but the interpretation of this concept differs between consumers. Although recognized for its quality, its unique sensory characteristics (smell, taste, aroma) may have a major impact on consumer perception. The aim of this review is to describe the consumer behavior regarding game meat through elements of neuroperception, using methods of analysis, observation, and interpretation of scientific information from the literature. Following the analysis of published papers on this topic, it was shown that external factors influencing the biological basis of behavior could provide explanations for the acceptance or rejection of this type of meat and solutions. Neuroperception can explain the mechanism behind consumer decision-making. The influence of extrinsic factors (environment, mood, emotions, stress) shapes the perception of the quality attributes of game meat, the unique sensory characteristics of game meat passing through a primary filter of sensory receptors (eyes, nose, tongue, etc). Game meat is darker and tougher (compared to meat from domestic animals), and the taste and smell have the power to trigger memories and change the mood, influencing consumer behavior. Understanding consumer attitudes towards game meat in relation to quality attributes and the physiology of sensory perception can provide important insights for food industry professionals, processors, sensory evaluators, and researchers.
Collapse
Affiliation(s)
- Marius-Mihai Ciobanu
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Diana-Remina Manoliu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mihai-Cătălin Ciobotaru
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Bianca-Georgiana Anchidin
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mădălina Matei
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Mugurel Munteanu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| | - Gabriela Frunză
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Otilia Cristina Murariu
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Elena-Iuliana Flocea
- Faculty of Agriculture, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 3, 700490 Iasi, Romania
| | - Paul-Corneliu Boișteanu
- Faculty of Animal and Food Resources Engineering, "Ion Ionescu de la Brad" University of Life Sciences, M. Sadoveanu Alley, No. 8, 700490 Iasi, Romania
| |
Collapse
|
5
|
Szymański P, Łaszkiewicz B, Kern-Jędrychowska A, Siekierko U, Kołożyn-Krajewska D. The effect of the use of Limosilactobacillus fermentum S8 isolated from organic acid whey on nitrosyl pigment concentration and the colour formation of uncured cooked meat products. Meat Sci 2022; 196:109031. [DOI: 10.1016/j.meatsci.2022.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
6
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
7
|
Karwowska M, Kononiuk AD. Effect of nitrate reduction and storage time on the antioxidative properties, biogenic amines and amino acid profile of dry fermented loins. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Małgorzata Karwowska
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
| | - Anna D. Kononiuk
- Department of Animal Raw Materials Technology Faculty of Food Science and Biotechnology University of Life Sciences in Lublin Skromna 8 Lublin 20‐704 Poland
- Institute of Animal Reproduction and Food Research Polish Academy of Sciences ul Tuwima 10 Olsztyn 10‐748 Poland
| |
Collapse
|
8
|
The Influence of Acid Whey on the Lipid Composition and Oxidative Stability of Organic Uncured Fermented Bacon after Production and during Chilling Storage. Antioxidants (Basel) 2021; 10:antiox10111711. [PMID: 34829583 PMCID: PMC8614668 DOI: 10.3390/antiox10111711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of this research was to evaluate the effect of acid whey on changes in the fatty acid profile, oxidative stability, physico-chemical parameters, and microbiological and sensory quality of traditional organic uncured fermented Polish bacon after production and during chilling storage. Three different treatments of fermented bacon were produced: C—control bacon with a nitrite curing mixture; T—bacon with a nitrate curing mixture; and AW—bacon with acid whey and NaCl. The acid whey used in the production of uncured fermented pork bacon positively changed the sensorial characteristics, directly after the ripening process, and had a positive effect in terms of a decrease in the pH of the product. All of the fermented bacon treatments in general were of good microbiological quality. A higher lactic acid bacteria (LAB) level was observed in the AW treatment after the fermentation process, and the bacteria number did not change during storage, whereas in the C and T treatments, the LAB level increased during storage (p < 0.05). The application of acid whey did not limit the formation of secondary oxidation products (TBARS) during bacon ripening (1.68 mg MDA kg−1), but had a reduced value during storage time (0.73 mg MDA kg−1). The highest polyunsaturated fatty acid (PUFA) levels, after ripening and after four weeks of refrigerated storage, were found in the C treatment. In the AW treatment, it was found that the PUFA level increased; likewise, the content of n-3 and n-6 fatty acids increased, while saturated fatty acids (SFAs) decreased during storage (p < 0.05). The opposite tendency was observed in the C treatment. After four weeks of storage, the PUFA/SFA ratio was the lowest in the nitrate treatment, and higher values of the PUFA/SFA ratio were obtained in the acid whey and nitrite treatment (p < 0.05).
Collapse
|
9
|
Ashaolu TJ, Khalifa I, Mesak MA, Lorenzo JM, Farag MA. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34014126 DOI: 10.1080/10408398.2021.1929059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meat fermentation ensures its preservation, improved safety and quality. This prominently used traditional process has survived for ages, creating physical, biochemical, and microbial changes, and to significantly affect the functionality, organoleptic property, and nutrition of the fermented products. In some process, the growth of various pathogenic and spoilage microorganisms is inhibited. The production of fermented meat relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activities. In this review, fermented meat types and their health benefits were firstly introduced. This was followed by a description of fermentation conditions vis-à-vis starters, bacterial, yeast and mold cultures, and their role in meat. The review focuses on how microorganisms affect texture change, flavor formation, and biogenic amines (BA) accumulation in fermented meat. In addition, the production conditions and the major biochemical changes in fermented meat products were also introduced to present the best factors influencing the quality of fermented meat. Microorganisms and microbial enzymes in fermented meats were discussed as they could affect organoleptic characteristics of fermented meats. Moreover, safety concerns and prospects for further research of fermented meat were also discussed with emphasis on novel probiotic and starter cultures development; bioinformatics, omics technologies and data modeling to maximize the benefit from fermentation process in meat production.
Collapse
Affiliation(s)
- Tolulope J Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Matta A Mesak
- Chemistry Department, School of Sciences and Engineering, The American University, Cairo, New Cairo, Egypt
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Karwowska M, Stadnik J, Stasiak DM, Wójciak K, Lorenzo JM. Strategies to improve the nutritional value of meat products: incorporation of bioactive compounds, reduction or elimination of harmful components and alternative technologies. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Małgorzata Karwowska
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Joanna Stadnik
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Dariusz M. Stasiak
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - Karolina Wójciak
- Department of Meat Technology and Food Quality University of Life Sciences in Lublin ul. Skromna 8 Lublin 20‐704 Poland
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia Rúa Galicia No 4 Parque Tecnológico de Galicia San Cibrao das Viñas Ourense 32900 Spain
- Área de Tecnología de los Alimentos Facultad de Ciencias de Ourense Universidad de Vigo Ourense 32004 Spain
| |
Collapse
|
11
|
Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031320] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aims to improve knowledge on fermented beef and fallow deer sausages and the effect of nitrite elimination and the addition of freeze dried acid whey on the fatty acid profile and volatile compounds. Three different formulations within each of the two product groups, made of beef and fallow deer meat, respectively, were prepared: control sample with sodium nitrite, sample without nitrite, and sample without nitrite and with the addition of freeze-dried acid whey powder (0.7%). After production, the sausages were subjected to analysis including proximate chemical composition, pH and water activity, Thiobarbituric Acid Reactive Substance (TBARS), fatty acid profile, and volatile compound determination. The fermented sausages were characterized by an average pH and water activity in the range of 5.23–5.79 and 0.910–0.918, respectively. Fallow deer sausages were characterized by a higher content of saturated and polyunsaturated fatty acids in comparison to beef sausages. The elimination of nitrite did not significantly affect the amount of volatile compounds in fermented sausages. However, the effect of the freeze-dried acid whey powder addition on the amount of some volatile compounds in uncured sausages was observed, in particular, that derived from bacterial metabolism.
Collapse
|
12
|
Karwowska M, Kononiuk AD, Stasiak DM, Patkowski K. Fatty Acid Profile and Antioxidative Properties of Peptides Isolated from Fermented Lamb Loin Treated with Fermented Milk. Antioxidants (Basel) 2020; 9:antiox9111094. [PMID: 33171876 PMCID: PMC7695192 DOI: 10.3390/antiox9111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/24/2020] [Accepted: 11/03/2020] [Indexed: 11/26/2022] Open
Abstract
This study evaluated the impact of fermented milk maceration on fermented lamb loin without nitrate to obtain peptides with high activity against oxidative changes (ABTS, DPPH, reducing power) as well as a favorable fatty acid profile, including CLA content. Additionally, an attempt was made to evaluate the influence of the lamb breed on the assessed properties. Raw loins (m. Longissimus dorsi) obtained from sheep of three polish breeds—Wrzosówka, Uhruska, and Świniarka—and fermented products were tested. The fermented loins obtained after 14 days of processing were characterized by pH and water activity values in the ranges, respectively, 4.76–5.12 and 0.902–0.915. The maceration of meat in a fermented milk has caused greater acidification of the meat during fermentation. Statistical analysis indicated that treatment was the factor with significant effect on peptide content; no effect of animal breed was found. The peptide content isolated from raw meat ranged from 2.90 to 4.31 mg g−1 of sample, while in fermented meat products it was significant higher (11.59–16.37 mg g−1 of product). The antioxidant properties of peptides were positively correlated with peptides content. The maceration in fermented milk resulted in a statistically significant increase of ABTS value in case of fermented lamb loin of Świniarka breed. The raw meat and fermented meat products form the Świniarka lamb breed were characterized by the highest content of the total CLA isomers. The main CLA isomer found was cis9-trans11 (rumenic acid), followed by cis9-cis11, trans9-trans11, and trans10-cis12. The rumenic acid content was higher than, respectively, 87% and 80–88% of total CLA isomers in case of raw meat and fermented lamb loins of three breeds.
Collapse
Affiliation(s)
- Małgorzata Karwowska
- Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland; (M.K.); (A.D.K.)
| | - Anna D. Kononiuk
- Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland; (M.K.); (A.D.K.)
| | - Dariusz M. Stasiak
- Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland; (M.K.); (A.D.K.)
- Correspondence:
| | - Krzysztof Patkowski
- Institute of Animal Breeding and Biodiversity Conservation, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| |
Collapse
|