da Silva MCM, Pereira RSB, Araujo ACA, Filho EGDS, Dias ADL, Cavalcante KS, de Sousa MS. New Perspectives about Drug Candidates Targeting HTLV-1 and Related Diseases.
Pharmaceuticals (Basel) 2023;
16:1546. [PMID:
38004412 PMCID:
PMC10674638 DOI:
10.3390/ph16111546]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 11/26/2023] Open
Abstract
Among the human T-lymphotropic virus (HTLV) types, HTLV-1 is the most prevalent, and it has been linked to a spectrum of diseases, including HAM/TSP, ATLL, and hyperinfection syndrome or disseminated strongyloidiasis. There is currently no globally standard first-line treatment for HTLV-1 infection and its related diseases. To address this, a comprehensive review was conducted, analyzing 30 recent papers from databases PubMed, CAPES journals, and the Virtual Health Library (VHL). The studies encompassed a wide range of therapeutic approaches, including antiretrovirals, immunomodulators, antineoplastics, amino acids, antiparasitics, and even natural products and plant extracts. Notably, the category with the highest number of articles was related to drugs for the treatment of ATLL. Studies employing mogamulizumab as a new perspective for ATLL received greater attention in the last 5 years, demonstrating efficacy, safe use in the elderly, significant antitumor activity, and increased survival time for refractory patients. Concerning HAM/TSP, despite corticosteroid being recommended, a more randomized clinical trial is needed to support treatment other than corticoids. The study also included a comprehensive review of the drugs used to treat disseminated strongyloidiasis in co-infection with HTLV-1, including their administration form, in order to emphasize gaps and facilitate the development of other studies aiming at better-directed methodologies. Additionally, docking molecules and computer simulations show promise in identifying novel therapeutic targets and repurposing existing drugs. These advances are crucial in developing more effective and targeted treatments against HTLV-1 and its related diseases.
Collapse