1
|
El-Ashmawy NE, Al-Ashmawy GM, Hamada OB, Khedr NF. The role of ABCG2 in health and disease: Linking cancer therapy resistance and other disorders. Life Sci 2025; 360:123245. [PMID: 39561874 DOI: 10.1016/j.lfs.2024.123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/13/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
All biological systems have adenosine triphosphate (ATP) binding cassette (ABC) transporters, one of the significant protein superfamilies involved in transport across membranes. ABC transporters have been implicated in the etiology of diseases like metabolic disorders, cancer, and Alzheimer's disease. ATP-binding cassette superfamily G member 2 (ABCG2), one of the ABC transporters, is necessary for the ATP-dependent efflux of several endogenous and exogenous substances. Consequently, it maintained cellular homeostasis and shielded tissue from xenobiotic substances. ABCG2 was initially identified in an Adriamycin-selected breast cancer cell line (MCF-7/AdrVp) and was linked to the emergence of multidrug resistance (MDR) in cancerous cells. Under many pathophysiological conditions, including inflammation, disease pathology, tissue injury, infection, and in response to xenobiotics and endogenous substances, the expression of ABCG2 undergoes alterations that result in modifications in its function and activity. Genetic variants in the ABCG2 transporter can potentially impact its expression and function, contributing to the development of many disorders. This review aimed to illustrate the impact of ABCG2 expression and its variants on oral drug bioavailability, MDR in specific cancer cells, explore the relationship between ABCG2 expression and other disorders such as gout, Alzheimer's disease, epilepsy, and erythropoietic protoporphyria, and demonstrate the influence of various synthetic and natural compounds in regulating ABCG2 expression.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; The British University in Egypt, Faculty of Pharmacy, Department of Pharmacology & Biochemistry, El Sherouk City, Cairo Postal Code: 11837, Egypt.
| | - Ghada M Al-Ashmawy
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt; Alsalam University in Egypt, Faculty of Pharmacy, Department of Biochemistry, Kafr El Zayat, Egypt.
| | - Omnia B Hamada
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| | - Naglaa F Khedr
- Tanta University, Faculty of Pharmacy, Department of Biochemistry, Tanta Postal Code: 31527, Egypt.
| |
Collapse
|
2
|
Meng S, Cao Y, Lu L, Li X, Sun S, Jiang F, Lu J, Fan D, Han X, Yao T. Quercetin Promote the Chemosensitivity in Organoids Derived from Patients with Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:993-1004. [PMID: 39720358 PMCID: PMC11668317 DOI: 10.2147/bctt.s494901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Aim The study aimed to culture organoids from tissues of patients with breast cancer (BC) and use the organoids to measure the sensitivity to quercetin and its combination with chemotherapeutic agents. Methods Four patient-derived organoids (PDOs) of BC were cultured. The proliferative activity and morphology of PDOs were evaluated on different generations and after resuscitation. H&E and immunohistochemical (IHC) staining were used to identify the pathological changes and the expression of biomarkers. The sensitivity to quercetin and chemotherapeutic agents and their combinations were evaluated using adenosine triphosphate (ATP) viability assays. Results We successfully obtained all PDOs from BC tissues. PDOs preserved their activity and morphology during generation passage. In addition, the pathological changes and expression patterns of estrogen receptor (ER), human epidermal growth factor receptor (HER2), and Ki67 of each PDO were consistent with their original tissues. All four PDOs were highly sensitive to quercetin, and their IC50 values were less than 22 μM. PDOs showed better sensitivity to docetaxel and epirubicin hydrochloride, but less sensitivity to cis-platinum. Combination with quercetin promoted the sensitivity to three chemotherapeutic agents. In particular, the IC50 value of cis-platinum greatly decreased. Conclusion We successfully established PDOs from patients with BC and demonstrated that quercetin can promote the sensitivity of chemotherapeutic agents in these PDOs.
Collapse
Affiliation(s)
- Shengwen Meng
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Yifan Cao
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Lei Lu
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Xuanhe Li
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Siyu Sun
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Fangqian Jiang
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Jianfei Lu
- Department of Breast and Thyroid Surgery, Bengbu First People’s Hospital, Bengbu, Anhui Province, People’s Republic of China
| | - Dongwei Fan
- Department of General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan, Anhui Province, People’s Republic of China
| | - Xinxin Han
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Tingjing Yao
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| |
Collapse
|
3
|
Fang L, Gao D, Wang T, Zhao H, Zhang Y, Wang S. From nature to clinic: Quercetin's role in breast cancer immunomodulation. Front Immunol 2024; 15:1483459. [PMID: 39712006 PMCID: PMC11659267 DOI: 10.3389/fimmu.2024.1483459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Immunotherapy has brought hope to many breast cancer patients, but not all patients benefit from it. Quercetin (Qu), a natural product found in various sources, has anti-inflammatory and anti-tumor properties. We conducted a review of the pharmacological research of Qu in regulating anti-tumor immunity in vivo and in vitro. Qu can directly regulate the local tumor microenvironment (TME) by enhancing the activity of immune cells which includes promoting the infiltration of T cells and natural killer (NK) cells, inhibiting the recruitment of myeloid-derived suppressor cells and tumor-associated macrophages. Additionally, Qu inhibits anaerobic glycolysis in tumor cells, thereby reducing the production and transport of lactic acid. It also suppresses tumor angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway and the vitamin D pathway. Furthermore, Qu can enhance the efficacy of immunotherapy for breast cancer by modulating the systemic microenvironment. This includes inhibiting obesity-related chronic inflammation to decrease the production of inflammatory factors, regulating the composition of intestinal microbiota, and intervening in the metabolism of intestinal flora. At the same time, we also address challenges in the clinical application of Qu, such as low absorption rates and unknown effective doses. In conclusion, we highlight Qu as a natural immunomodulator that enhances immune cell activity and has the potential to be developed as an adjunct for breast cancer.
Collapse
Affiliation(s)
- Liguang Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dandan Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Tong Wang
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haijun Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Shandong Co-Innovation Center of Classic Traditional Chinese Medicine (TCM) Formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Mao S, Zhao Y, Xiong H, Gong C. Excavating regulated cell death signatures to predict prognosis, tumor microenvironment and therapeutic response in HR+/HER2- breast cancer. Transl Oncol 2024; 50:102117. [PMID: 39241556 PMCID: PMC11406102 DOI: 10.1016/j.tranon.2024.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Regulated cell death (RCD) has been documented to have great potentials for discovering novel biomarkers and therapeutic targets in malignancies. But its role and clinical value in HR+/HER2- breast cancer, the most common subtype of breast cancer, are obscure. In this study, we comprehensively explored 12 types of RCD patterns and found extensive mutations and dysregulations of RCD genes in HR+/HER2- breast cancer. A prognostic RCD scoring system (CDScore) based on six critical genes (LEF1, SLC7A11, SFRP1, IGFBP6, CXCL2, STXBP1) was constructed, in which a high CDScore predicts poor prognosis. The expressions and prognostic value of LEF1 and SFRP1were also validated in our tissue microarrays. The nomogram established basing on CDScore, age and TNM stage performed satisfactory in predicting overall survival, with an area under the ROC curve of 0.89, 0.82 and 0.8 in predicting 1-year, 3-year and 5-year overall survival rates, respectively. Furthermore, CDScore was identified to be correlated with tumor microenvironments and immune checkpoints by excavation of bulk and single-cell sequencing data. Patients in CDScore high group might be resistant to standard chemotherapy and target therapy. Our results underlined the potential effects and importance of RCD in HR+/HER2- breast cancer and provided novel biomarkers and therapeutic targets for HR+/HER2- breast cancer patients.
Collapse
Affiliation(s)
- Shuangshuang Mao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuanyuan Zhao
- Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Dong W, Li J, Zhuang Z. Neutrophil-related Signature Characterizes Immune Landscape and Predicts Prognosis of Invasive Breast Cancer. Biochem Genet 2024:10.1007/s10528-024-10940-0. [PMID: 39417978 DOI: 10.1007/s10528-024-10940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
As a leading prevalent malignancy, breast cancer remains a significant worldwide health issue. Recent research indicates that neutrophils play a crucial role in breast cancer development. The prognostic significance of neutrophil-related genes (NRGs) or the immune landscape of the neutrophil-related signature in invasive breast cancer (IBC) is, nevertheless, unknown. To uncover innovative therapy alternatives, the significance of the neutrophil-related signatures in IBC was evaluated here. Briefly, a prediction model based on neutrophil-related core prognostic genes and The Cancer Genome Atlas data was created (TCGA). The model may assess IBC patients' prognosis. The IBC data from the Gene Expression Omnibus (GEO) confirmed the prognostic accuracy of the model. The overall survival (OS) of patients was worse in the group with a high NRGs score compared to the group with a low NRGs score. In addition, patients with low NRGs scores were considerably more sensitive to vinorelbine, cyclophosphamide, epirubicin, gemcitabine, paclitaxel, 5-fluorouracil, docetaxel, and cisplatin. Patients with low NRGs scores responded better to CTLA-4 and PD-1 treatments. Additionally, the immune microenvironment components were more abundant in patients with low NRGs scores. Moreover, qRT-PCR results confirmed that LEF1 had a higher expression level in tumor samples compared to normal samples, whereas NRG1 and STX11 exhibited lower expression levels in tumor samples than in normal samples. These results suggest that NRGs might be utilized as biomarkers to predict the prognosis of individuals with IBC, thereby paving the way for the creation of customized therapies for IBC.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
Wu Q, Yan H, Kang Z. A Review of Traditional Chinese Medicine for Triple Negative Breast Cancer and the Pharmacological Mechanisms. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:987-1011. [PMID: 38879747 DOI: 10.1142/s0192415x2450040x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Conventional treatment options for TNBC often have limited efficacy and significant side effects. In recent years, traditional Chinese medicine (TCM) has shown promising results in the treatment of TNBC. TCMs include herb combinations that have synergistic effects to regulate homeostasis in the body, reduce tumor resistance, and improve patient quality of life. At present, three main TCM methods are used to treat TNBC in the clinic: strengthening the body's resistance, dispelling phlegm, and removing cancer toxins. This paper reviews the theories and mechanisms of each in TNBC treatment. The method of strengthening the body's resistance emphasizes enhancing the body's original Qi to fight against pathogenic factors; the method of dispelling phlegm seeks to eliminate phlegm stagnation and alleviate the burden on affected organs; the method of removing cancer toxins focuses on detoxification and detumescence to remove the toxic elements associated with TNBC. Although these methods treat TNBC from different etiologies, they have achieved good therapeutic effects and represent an important academic approach: That is, to cure the disease with a comprehensive view of the body and restore the balance of Yin and Yang. This knowledge lays a foundation for the future development and reasonable application of TCM in the clinic.
Collapse
Affiliation(s)
- Qinhang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Hongkai Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Ziyi Kang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Liu Q, Luo Z, Sun M, Li W, Liu S. Mechanistic exploration and experimental validation of the Xiaochaihu decoction for the treatment of breast cancer by network pharmacology. Aging (Albany NY) 2024; 16:7979-7999. [PMID: 38742934 PMCID: PMC11132012 DOI: 10.18632/aging.205798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Xiaochaihu (XCH) decoction is a traditional Chinese prescription that has been recorded in the pharmacopeia of the People's Republic of China. In China, the XCH decoction is used clinically to treat a variety of tumors, including breast cancer. However, its potential mechanism of action is still undefined. METHODS The chemical compounds in the XCH decoction were identified via Q Exactive Orbitrap LC-MS/MS. Then, we screened the active ingredients and targets in the XCH decoction from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Next, Cytoscape and Metascape were used to construct an active ingredient-target-disease network, which included a protein-protein interaction (PPI) network, GO enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, we used molecular docking and in vitro experiments to verify the results of network pharmacology analysis. RESULTS More than 70 major compounds were identified by Q Exactive Orbitrap LC-MS/MS analysis from the XCH decoction. A total of 162 active ingredients and 153 targets related to the XCH decoction and breast cancer were identified, and a compound-target-disease network was constructed. GO and KEGG analyses revealed that the XCH decoction regulated the drug response, apoptosis process, cancer pathway, and PI3K/Akt signaling pathway. Molecular docking and experimental validation indicated that the XCH decoction suppressed proliferation and induced apoptosis in breast cancer cells by regulating the expression of apoptosis-related proteins and inhibiting the PI3K/Akt pathway. CONCLUSIONS This study suggested that the XCH decoction can be used to treat breast cancer by inhibiting cell proliferation, inducing apoptosis and downregulating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qinglong Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Zehua Luo
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Mei Sun
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Songqing Liu
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
8
|
Zhu H, Hu H, Hao B, Zhan W, Yan T, Zhang J, Wang S, Hu H, Zhang T. Insights into a Machine Learning-Based Palmitoylation-Related Gene Model for Predicting the Prognosis and Treatment Response of Breast Cancer Patients. Technol Cancer Res Treat 2024; 23:15330338241263434. [PMID: 39205467 PMCID: PMC11363247 DOI: 10.1177/15330338241263434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Breast cancer is a prevalent public health concern affecting numerous women globally and is associated with palmitoylation, a post-translational protein modification. Despite increasing focus on palmitoylation, its specific implications for breast cancer prognosis remain unclear. The work aimed to identify prognostic factors linked to palmitoylation in breast cancer and assess its effectiveness in predicting responses to chemotherapy and immunotherapy. METHODS We utilized the "limma" package to analyze the differential expression of palmitoylation-related genes between breast cancer and normal tissues. Hub genes were identified using the "WGCNA" package. Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified a prognostic feature associated with palmitoylation and developed a prognostic nomogram with the "regplot" package. The predictive values of the model for chemotherapy and immunotherapy responses were assessed using immunophenoscore (IPS) and the "pRophetic" package. RESULTS We identified 211 differentially expressed genes related to palmitoylation, among which 44 demonstrated prognostic potential. Subsequently, a predictive model comprising eleven palmitoylation-related genes was developed. Patients were classified into high-risk and low-risk groups based on the median risk score. The findings revealed that individuals in the high-risk group exhibited lower survival rates, while those in the low-risk group showed increased immune cell infiltration and improved responses to chemotherapy and immunotherapy. Moreover, the BC-Palmitoylation Tool website was established. CONCLUSION This study developed the first machine learning-based predictive model for palmitoylation-related genes and created a corresponding website, providing clinicians with a valuable tool to improve patient outcomes.
Collapse
Affiliation(s)
- Hongxia Zhu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Haihong Hu
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bo Hao
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wendi Zhan
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Yan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingdi Zhang
- School of Pharmacy, Hengyang Medical College, University of South China, Hengyang, China
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Siyu Wang
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongjuan Hu
- Department of Public Health Service, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Taolan Zhang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Phase I Clinical Trial Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Flore G, Deledda A, Lombardo M, Armani A, Velluzzi F. Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants (Basel) 2023; 12:1845. [PMID: 37891924 PMCID: PMC10603973 DOI: 10.3390/antiox12101845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients' general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Andrea Armani
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
- Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, 00166 Rome, Italy
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (F.V.)
| |
Collapse
|
10
|
Zhang J, Zhuang Z, Guo M, Wu K, Yang Q, Min X, Cui W, Xu F. Ze-Qi decoction inhibits non-small cell lung cancer growth and metastasis by modulating the PI3K/Akt/p53 signaling pathway. J Tradit Complement Med 2023; 13:417-429. [PMID: 37693094 PMCID: PMC10491987 DOI: 10.1016/j.jtcme.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
Background The Ze-Qi decoction (ZQD) is a traditional Chinese herbal formula commonly applied to treat lung cancer in China. This study aimed to assess the effective ingredients and molecular mechanisms of ZQD in treating non-small cell lung cancer (NSCLC) based on network pharmacology combined with experimental validation. Methods Network pharmacology, bioinformatics, and molecular docking analyses were conducted to explore the mechanism of ZQD for treating NSCLC, which was further confirmed by animal experiments. Results In total, 117 bioactive ingredients and 499 target proteins of ZQD were identified. Network pharmacology revealed 7 core active ingredients and 74 core target proteins. Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the PI3K/Akt and p53 signaling pathways may be crucial in NSCLC treatment. Molecular docking analysis revealed that the seven crucial bioactive ingredients complexed with PI3K, Akt, and p53. The animal experiment results validated that ZQD treatment promoted cell apoptosis and cell cycle arrest, thereby inhibiting NSCLC growth and metastasis. Furthermore, ZQD treatment caused a significant increase in p53 and Bax, while leading to a distinct reduction in p-PI3K (Tyr317), p-Akt (Ser473), VEGFA, CD31, MMP2, MMP9, Bcl2, and CDK2. Conclusions ZQD inhibited the growth and metastasis of NSCLC subcutaneous tumors in C57BL/6J mice via the PI3K/Akt/p53 signaling pathway.
Collapse
Affiliation(s)
- Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zifan Zhuang
- College of First Clinical Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Minghao Guo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Kai Wu
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Qingfeng Yang
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xin Min
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
11
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
12
|
Imran M, Insaf A, Hasan N, Sugandhi VV, Shrestha D, Paudel KR, Jha SK, Hansbro PM, Dua K, Devkota HP, Mohammed Y. Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer. Molecules 2023; 28:molecules28083475. [PMID: 37110709 PMCID: PMC10142939 DOI: 10.3390/molecules28083475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived compounds, specifically antioxidants, have played an important role in scavenging the free radicals present under diseased conditions. The persistent generation of free radicals in the body leads to inflammation and can result in even more severe diseases such as cancer. Notably, the antioxidant potential of various plant-derived compounds prevents and deregulates the formation of radicals by initiating their decomposition. There is a vast literature demonstrating antioxidant compounds' anti-inflammatory, anti-diabetic, and anti-cancer potential. This review describes the molecular mechanism of various flavonoids, such as quercetin, kaempferol, naringenin, epicatechin, and epicatechin gallate, against different cancers. Additionally, the pharmaceutical application of these flavonoids against different cancers using nanotechnologies such as polymeric, lipid-based nanoparticles (solid-lipid and liquid-lipid), liposomes, and metallic nanocarriers is addressed. Finally, combination therapies in which these flavonoids are employed along with other anti-cancer agents are described, indicating the effective therapies for the management of various malignancies.
Collapse
Affiliation(s)
- Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Areeba Insaf
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Vrushabh V Sugandhi
- Department of Pharmaceutics, Y.B. Chavan College of Pharmacy, Aurangabad 431001, India
| | - Deumaya Shrestha
- Department of Bioscience, Mokp o National University, Muna 58554, Republic of Korea
| | - Keshav Raj Paudel
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, Mokpo National University, Muna 58554, Republic of Korea
| | - Philip M Hansbro
- Centre of Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Yousuf Mohammed
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
13
|
Gu S, Liu F, Xie X, Ding M, Wang Z, Xing X, Xiao T, Sun X. β-Sitosterol blocks the LEF-1-mediated Wnt/β-catenin pathway to inhibit proliferation of human colon cancer cells. Cell Signal 2023; 104:110585. [PMID: 36603684 DOI: 10.1016/j.cellsig.2022.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study aimed to investigate the LEF-1-mediated Wnt/β-catenin pathway for its biological functions and prognostic value in colon cancer (CC). Furthermore, the potential molecular mechanism of β-sitosterol in CC was investigated in vitro. METHODS Clinical information and gene expression profiles from CC patients were obtained based on Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In addition, we applied R software "Limma" package for the differential analysis of LEF-1 between cancer and para-carcinoma tissue samples. Kaplan-Meier (KM) survival analysis was adopted for analyzing whether LEF-1 was of prognostic significance. Moreover, gene set enrichment analysis (GSEA) was adopted for pathway enrichment analysis and visualization. In addition, CCK8, plate cloning, scratch and high-content screening (HCS) imaging assays were performed to examine the therapeutic efficacy of β-sitosterol in human CC HCT116 cells. siRNA technology was employed to knock down LEF1 expression in HCT116 cells. qRT-PCR and Western-blot (WB) analysis were carried out to analyze the HCT-116 mRNA and protein expression levels, respectively. RESULTS LEF-1 was up-regulated within CC and acted as an oncogenic gene. LEF-1 up-regulation predicted the dismal prognostic outcome and activated the Wnt/β-catenin pathway. β-sitosterol effectively suppressed HCT116 cells proliferation and invasion. For the mechanism underlying β-sitosterol, β-sitosterol was found to significantly down-regulate LEF-1 gene and protein expression and disrupt Wnt/β-catenin pathway transmission in HCT116 cells. After suppressing LEF-1 expression, its downstream targets including C-myc, Survivin and CCND1 were also down-regulated. CONCLUSION According to our results, LEF-1 down-regulation can effectively block Wnt/β-catenin pathway, inhibit CC cell growth and migration. Collectively, β-sitosterol can be used to treat CC, which can provide anti-tumor activity by targeting LEF-1.
Collapse
Affiliation(s)
- Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Fahui Liu
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Tianbao Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Key Laboratory of efficacy evaluation of Chinese Medicine against Glycolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
14
|
Zeng S, Xu Z, Liang Q, Thakur A, Liu Y, Zhou S, Yan Y. The prognostic gene CRABP2 affects drug sensitivity by regulating docetaxel-induced apoptosis in breast invasive carcinoma: A pan-cancer analysis. Chem Biol Interact 2023; 373:110372. [PMID: 36736488 DOI: 10.1016/j.cbi.2023.110372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Cellular retinoic acid-binding protein 2 (CRABP2), a specific transporter of retinoic acid, has been shown to have an important biological role in human cancers. However, due to the substantial variability among different tumors, the role of CRABP2 remains uncertain and has not yet been subjected to systematic analysis. Utilizing The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Clinical Proteomic Tumor Analysis Consortium (CPTAC), Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis 2 (GEPIA2), Kaplan-Meier Plotter, Biomarker Exploration of Solid Tumors (BEST), Cancer Cell Line Encyclopedia (CCLE), Receiver Operating Characteristic plotter (ROC plotter), and other online public tools, expression levels of CRABP2 in breast invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), and ovarian serous cystadenocarcinoma (OV) were found to be significantly greater than those in adjacent normal tissues, suggesting a correlation to poor prognosis. Among the three, CRABP2 expression in BRCA was most closely associated with clinical prognosis. In a study of docetaxel-treated BRCA patients, CRABP2 expression was significantly higher in the drug-resistant group. Colony formation and flow cytometry analysis were used to further investigate the relationship between CRABP2 and docetaxel sensitivity in BRCA cells MDA-MB-231and BT549. The knockdown of CRABP2 expression significantly reduced cell growth and increased sensitivity to the chemotherapeutic agent docetaxel in BRCA cells. Furthermore, CRABP2 knockdown augmented docetaxel-induced apoptosis. Molecular docking using SwissDock tool revealed that CRABP2 had a greater binding affinity to docetaxel than docetaxel-targeted proteins. This research provides an insight into the expression and prognostic potential of CRABP2 in cancers and suggests that CRABP2 may control docetaxel sensitivity in BRCA cells through apoptosis, warranting further investigation.
Collapse
Affiliation(s)
- Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; Department of Pathology, Xiangya Changde Hospital, Changde, 415000, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Illinois, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shangjun Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int J Mol Sci 2023; 24:ijms24032952. [PMID: 36769274 PMCID: PMC9918234 DOI: 10.3390/ijms24032952] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Phytochemicals have long been effective partners in the fight against several diseases, including cancer. Among these, flavonoids are valuable allies for both cancer prevention and therapy since they are known to influence a large panel of tumor-related processes. Particularly, it was revealed that quercetin, one of the most common flavonoids, controls apoptosis and inhibits migration and proliferation, events essential for the development of cancer. In this review, we collected the evidence on the anti-cancer activity of quercetin exploring the network of interactions between this flavonol and the proteins responsible for cancer onset and progression focusing on breast, colorectal and liver cancers, owing to their high worldwide incidence. Moreover, quercetin proved to be also a potentiating agent able to push further the anti-cancer activity of common employed anti-neoplastic agents, thus allowing to lower their dosages and, above all, to sensitize again resistant cancer cells. Finally, novel approaches to delivery systems can enhance quercetin's pharmacokinetics, thus boosting its great potentiality even further. Overall, quercetin has a lot of promise, given its multi-target potentiality; thus, more research is strongly encouraged to properly define its pharmaco-toxicological profile and evaluate its potential for usage in adjuvant and chemoprevention therapy.
Collapse
|
16
|
Time above threshold plasma concentrations as pharmacokinetic parameter in the comparison of oral and intravenous docetaxel treatment of breast cancer tumors. Anticancer Drugs 2023; 34:281-289. [PMID: 36730487 DOI: 10.1097/cad.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Prolonging the time which plasma concentrations of antimitotic drugs, such as the taxanes, exceed cytotoxic threshold levels may be beneficial for their efficacy. Orally administered docetaxel offers an undemanding approach to optimize such time above threshold plasma concentrations (t C>threshold ). METHODS A nonsystematic literature screen was performed to identify studies reporting in-vitro half-maximal inhibitory concentration (IC 50 ) values for docetaxel. Pharmacokinetics of intravenously (i.v.) docetaxel (75 mg/m 2 ) and orally administered docetaxel (ModraDoc006) co-administered with ritonavir (r) given twice daily (30 + 20 mg concomitant with 100 mg ritonavir bis in die) were simulated using previously developed population models. T C>threshold was calculated for a range of relevant thresholds in terms of in-vitro cytotoxicity and plasma concentrations achieved after i.v. and oral administration of docetaxel. A published tumor growth inhibition model for i.v. docetaxel was adapted to predict the effect of attainment of time above threshold levels on tumor dynamics. RESULTS Identified studies reported a wide range of in vitro IC 50 values [median 0.04 µmol/L, interquartile range (IQR): 0.0046-0.62]. At cytotoxic thresholds <0.078 µmol/L oral docetaxel shows up to ~7.5-fold longer t C>threshold within each 3-week cycle for a median patient compared to i.v.. Simulations of tumor dynamics showed the increased relative potential of oral docetaxel for inhibition of tumor growth at thresholds of 0.075, 0.05 and 0.005 µmol/L. CONCLUSION ModraDoc006/r is superior to i.v. docetaxel 75 mg/m 2 in terms of median time above cytotoxic threshold levels <0.078 µmol/L. This may indicate superior cytotoxicity and inhibition of tumor growth compared to i.v. administration for relatively docetaxel-sensitive tumors.
Collapse
|
17
|
Zhao X, Wang X, Pang Y. Phytochemicals Targeting Ferroptosis: Therapeutic Opportunities and Prospects for Treating Breast Cancer. Pharmaceuticals (Basel) 2022; 15:1360. [PMID: 36355532 PMCID: PMC9693149 DOI: 10.3390/ph15111360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/04/2023] Open
Abstract
Ferroptosis, a recently discovered iron-dependent regulated cell death, has been implicated in the therapeutic responses of various cancers including breast cancer, making it a promising therapeutic target to manage this malignancy. Phytochemicals are conventional sources for medication development. Some phytochemicals have been utilized therapeutically to treat cancers as pharmaceutic agents or dietary supplements. Intriguingly, a considerable number of antitumor drugs derived from phytochemicals have been proven to be targeting ferroptosis, thus producing anticancer effects. In this review, we provide a short overview of the interaction between core ferroptosis modulators and breast cancer, illustrating how ferroptosis affects the destiny of breast cancer cells. We also systematically summarize the regulatory effects of phytochemicals on ferroptosis and emphasize their clinical applications in breast cancer suppression, which may accelerate the development of their therapeutic use in breast cancer.
Collapse
Affiliation(s)
- Xinyi Zhao
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yuzhou Pang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
18
|
Yu H, Lv W, Tan Y, He X, Wu Y, Wu M, Zhang Q. Immunotherapy landscape analyses of necroptosis characteristics for breast cancer patients. J Transl Med 2022; 20:328. [PMID: 35864548 PMCID: PMC9306193 DOI: 10.1186/s12967-022-03535-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
Necroptosis plays a major role in breast cancer (BC) progression and metastasis. Besides, necroptosis also regulates inflammatory response and tumor microenvironment. Here, we aim to explore the predictive signature based on necroptosis-related genes (NRGs) for predicting the prognosis and response to therapies. Using Lasso multivariate cox analysis, we firstly established the NRG signature based on TCGA database. A total of 6 NRGs (FASLG, IPMK, FLT3, SLC39A7, HSP90AA1, and LEF1), which were associated with the prognosis of BC patients, were selected to establish our signature. Next, CIBERSORT algorithm was utilized to evaluate immune cell infiltration levels. We compare the response to immunotherapy using IMvigor 210 database, and also compared immune indicators in two risk groups via multiple methods. The biological function of IPMK was explored via in vitro verification. Finally, our results indicated that the signature was an independent prognostic indicator for BC patients with better efficiency than other reported signatures. The immune cell infiltration levels were higher, and the response to immunotherapy and chemotherapy was better in the low-risk groups. Besides, other immunotherapy-related factors, including TMB, TIDE, and expression of immune checkpoints were also increased in the low-risk group. Clinical sample validation showed that CD206 and IPMK in clinical samples were both up-regulated in the high-risk group. In vitro assay showed that IPMK promoted BC cell proliferation and migration, and also enhanced macrophage infiltration and M2 polarization. In summary, we successfully established the NRG signature, which could be used to evaluate BC prognosis and identify patients who will benefit from immunotherapy.
Collapse
Affiliation(s)
- Honghao Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Wenchang Lv
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yufang Tan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xiao He
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yiping Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Min Wu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
19
|
Michala AS, Pritsa A. Quercetin: A Molecule of Great Biochemical and Clinical Value and Its Beneficial Effect on Diabetes and Cancer. Diseases 2022; 10:37. [PMID: 35892731 PMCID: PMC9326669 DOI: 10.3390/diseases10030037] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin belongs to the broader category of polyphenols. It is found, in particular, among the flavonols, and along with kaempferol, myricetin and isorhamnetin, it is recognized as a foreign substance after ingestion in contrast to vitamins. Quercetin occurs mainly linked to sugars with the most common compounds being quercetin-3-O-glucoside or as an aglycone, especially in the plant population. The aim of this review is to present a recent bibliography on the mechanisms of quercetin absorption and metabolism, bioavailability, and antioxidant and the clinical effects in diabetes and cancer. The literature reports a positive effect of quercetin on oxidative stress, cancer, and the regulation of blood sugar levels. Moreover, research-administered drug dosages of up to 2000 mg per day showed mild to no symptoms of overdose. It should be noted that quercetin is no longer considered a carcinogenic substance. The daily intake of quercetin in the diet ranges 10 mg-500 mg, depending on the type of products consumed. This review highlights that quercetin is a valuable dietary antioxidant, although a specific daily recommended intake for this substance has not yet been determined and further studies are required to decide a beneficial concentration threshold.
Collapse
Affiliation(s)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University (IHU), P.O. 141 Sindos, 57400 Thessaloniki, Greece;
| |
Collapse
|
20
|
MotieGhader H, Tabrizi-Nezhadi P, Deldar Abad Paskeh M, Baradaran B, Mokhtarzadeh A, Hashemi M, Lanjanian H, Jazayeri SM, Maleki M, Khodadadi E, Nematzadeh S, Kiani F, Maghsoudloo M, Masoudi-Nejad A. Drug repositioning in non-small cell lung cancer (NSCLC) using gene co-expression and drug–gene interaction networks analysis. Sci Rep 2022; 12:9417. [PMID: 35676421 PMCID: PMC9177601 DOI: 10.1038/s41598-022-13719-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the most common cancer in men and women. This cancer is divided into two main types, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Around 85 to 90 percent of lung cancers are NSCLC. Repositioning potent candidate drugs in NSCLC treatment is one of the important topics in cancer studies. Drug repositioning (DR) or drug repurposing is a method for identifying new therapeutic uses of existing drugs. The current study applies a computational drug repositioning method to identify candidate drugs to treat NSCLC patients. To this end, at first, the transcriptomics profile of NSCLC and healthy (control) samples was obtained from the GEO database with the accession number GSE21933. Then, the gene co-expression network was reconstructed for NSCLC samples using the WGCNA, and two significant purple and magenta gene modules were extracted. Next, a list of transcription factor genes that regulate purple and magenta modules' genes was extracted from the TRRUST V2.0 online database, and the TF–TG (transcription factors–target genes) network was drawn. Afterward, a list of drugs targeting TF–TG genes was obtained from the DGIdb V4.0 database, and two drug–gene interaction networks, including drug-TG and drug-TF, were drawn. After analyzing gene co-expression TF–TG, and drug–gene interaction networks, 16 drugs were selected as potent candidates for NSCLC treatment. Out of 16 selected drugs, nine drugs, namely Methotrexate, Olanzapine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel, Verapamil, Dexamethasone, and Docetaxel, were chosen from the drug-TG sub-network. In addition, nine drugs, including Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, Doxorubicin, Azacitidine, Vorinostat, and Doxorubicin Hydrochloride, were selected from the drug-TF sub-network. Methotrexate and Dexamethasone are common in drug-TG and drug-TF sub-networks. In conclusion, this study proposed 16 drugs as potent candidates for NSCLC treatment through analyzing gene co-expression, TF–TG, and drug–gene interaction networks.
Collapse
|
21
|
Screening and Analysis of Biomarkers in the miRNA-mRNA Regulatory Network of Osteosarcoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8055052. [PMID: 35340229 PMCID: PMC8941547 DOI: 10.1155/2022/8055052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Osteosarcoma is a malignant disease, and few effective strategies can completely overcome the prognosis of these patients. This study attempted to reveal the key factors and related molecular mechanisms of osteosarcoma via excavating public microarray datasets. The data were obtained from the Gene Expression Omnibus (GEO) database; the differentially expressed miRNAs and differentially expressed genes were obtained in GSE69470 and GSE12685l, respectively; the target of miRNAs were predicted with the miRDIP database; the functions of the factors were analyzed and visualized by the David database and R language, respectively. Moreover, the protein-protein interaction network and miRNA-mRNA network were performed with the STRING database and Cytoscape software to identify the hub nodes in GSE69470 and GSE12685. The results showed that 834 DEGs were found in GSE12685 and 37 miRNAs were found in GSE69470. Moreover, the target of 37 miRNAs were enriched in PI3K/AKT, P53, Wnt/β-catenin, and TGF-β pathways and related with skeletal system development and cell growth. Besides, the miRNAs including miR-22-3p, miR-154-5p, miR-34a-5p, miR-485-3p, miR-93-5p, and miR-9-5p and the genes including LEF1, RUNX2, CSF1R, CDKN1A, and FBN1 were identified as the hub nodes via network analysis. In conclusion, this study suggested that the miRNAs including miR-22-3p, miR-154-5p, miR-34a-5p, miR-485-3p, miR-93-5p, and miR-9-5p and the genes including LEF1, RUNX2, CSF1R, CDKN1A, and FBN1 act as key factors in the progression of osteosarcoma.
Collapse
|
22
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
LEF1 silencing sensitizes colorectal cancer cells to oxaliplatin, 5-FU, and irinotecan. Biomed Pharmacother 2021; 143:112091. [PMID: 34474344 DOI: 10.1016/j.biopha.2021.112091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer all around the world. Chemotherapy plays an essential role in the treatment of CRC while Oxaliplatin, Irinotecan, and 5 - fluorouracil (5-FU) are the most commonly used chemotherapeutic drugs. However, chemo-resistance is a major obstacle to successful therapy. It has been shown that inhibition of Wnt signaling pathway can sensitize the cells to chemotherapy. Lymphoid enhancer factor (LEF1) is a member of TCF/LEF transcription family mediating Wnt nuclear responses. The long isoform of LEF1 is highly expressed in colorectal cancer cells compared to the normal intestinal cells, in which expression of the short isoform is dominant. We found that the downregulation of long isoforms of LEF1 makes CRC cell lines more sensitive to the effect of chemotherapeutic drugs. This sensitivity is imposed by reduced proliferation, increased apoptosis, or cell cycle arrest. Our results also demonstrated that there is a balance in the expression of long, and short isoforms of LEF1. In summary, we showed the role of LEF1 in chemo-resistance of colorectal cancer cells to Oxaliplatin, Irinotecan and 5-FU.
Collapse
|
24
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
25
|
Cheng M, Liu Q, Gan T, Fang Y, Yue P, Sun Y, Jin Y, Feng J, Tu L. Nanocrystal-Loaded Micelles for the Enhanced In Vivo Circulation of Docetaxel. Molecules 2021; 26:molecules26154481. [PMID: 34361634 PMCID: PMC8348076 DOI: 10.3390/molecules26154481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Prolonging in vivo circulation has proved to be an efficient route for enhancing the therapeutic effect of rapidly metabolized drugs. In this study, we aimed to construct a nanocrystal-loaded micelles delivery system to enhance the blood circulation of docetaxel (DOC). We employed high-pressure homogenization to prepare docetaxel nanocrystals (DOC(Nc)), and then produced docetaxel nanocrystal-loaded micelles (DOC(Nc)@mPEG-PLA) by a thin-film hydration method. The particle sizes of optimized DOC(Nc), docetaxel micelles (DOC@mPEG-PLA), and DOC(Nc)@mPEG-PLA were 168.4, 36.3, and 72.5 nm, respectively. The crystallinity of docetaxel was decreased after transforming it into nanocrystals, and the crystalline state of docetaxel in micelles was amorphous. The constructed DOC(Nc)@mPEG-PLA showed good stability as its particle size showed no significant change in 7 days. Despite their rapid dissolution, docetaxel nanocrystals exhibited higher bioavailability. The micelles prolonged the retention time of docetaxel in the circulation system of rats, and DOC(Nc)@mPEG-PLA exhibited the highest retention time and bioavailability. These results reveal that constructing nanocrystal-loaded micelles may be a promising way to enhance the in vivo circulation and bioavailability of rapidly metabolized drugs such as docetaxel.
Collapse
Affiliation(s)
- Meng Cheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Qiaoming Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Tiantian Gan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Pengfei Yue
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
| | - Jianfang Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| | - Liangxing Tu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China; (M.C.); (Q.L.); (T.G.); (Y.F.); (P.Y.); (Y.S.); (Y.J.)
- Correspondence: (J.F.); (L.T.); Tel.: +86-188-1733-8957 (L.T.)
| |
Collapse
|
26
|
Reynisson J. Advances in Anticancer Drug Discovery. Molecules 2021; 26:molecules26071821. [PMID: 33804936 PMCID: PMC8036529 DOI: 10.3390/molecules26071821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Keele, Staffordshire ST5 5BG, UK
| |
Collapse
|
27
|
Xu W, Xie S, Chen X, Pan S, Qian H, Zhu X. Effects of Quercetin on the Efficacy of Various Chemotherapeutic Drugs in Cervical Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:577-588. [PMID: 33623367 PMCID: PMC7894806 DOI: 10.2147/dddt.s291865] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Purpose This study aimed to investigate the effects of quercetin on the efficacy of various chemotherapeutic drugs in cervical cancer cells. Methods All drug experiments were performed in HeLa and SiHa cells. The cell viability was detected by Cell Counting Kit-8 assay, and cell proliferation was estimated by bromodeoxyuridine assay. CompuSyn software was utilized to calculate the combination index (CI) and evaluate the synergistic or antagonistic effect of quercetin with cisplatin, paclitaxel, 5-fluorouracil and doxorubicin on cell viability. Cell migration and invasion abilities were detected by transwell assays, and cell apoptosis was measured by flow cytometry. The expression levels of matrix metallopeptidase 2 (MMP2), ezrin, P-glycoprotein (P-Gp) and methyltransferase-like 3 (METTL3) protein treated with various drugs were analyzed by Western blotting. Results Quercetin inhibited the viability of HeLa and SiHa cells in a dose- and time-dependent manner. The CI values of quercetin with cisplatin, paclitaxel, 5-fluorouracil and doxorubicin were <1, >1, >1 and >1, respectively. The effect of combination of quercetin and cisplatin on cell proliferation was stronger than their individual effects. Co-treatment group could inhibit more cell migration and invasion in contrast to single-drug group. Besides, quercetin combined with cisplatin group induced more cell apoptosis in contrast to single-drug group. The results of Western blotting showed that the expression levels of MMP2, ezrin, P-Gp and METTL3 in co-treatment group were lower than in cisplatin group, respectively. Conclusion Quercetin and cisplatin had synergistic inhibitory effect on cervical cancer cells. Quercetin might enhance the antitumor effect of cisplatin via inhibiting proliferation, migration and invasion and elevating apoptosis through weakening MMP2, ezrin, METTL3 and P-Gp expression of cancer cells.
Collapse
Affiliation(s)
- Wenbin Xu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Shangdan Xie
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Xin Chen
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Shuya Pan
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Hongfei Qian
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
28
|
Cinobufagin Suppresses Melanoma Cell Growth by Inhibiting LEF1. Int J Mol Sci 2020; 21:ijms21186706. [PMID: 32933177 PMCID: PMC7554883 DOI: 10.3390/ijms21186706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 is highly expressed in melanoma, the functional role of LEF1 in melanoma growth is not fully understood. While A375, A2058, and G361 melanoma cells exhibit abnormally high LEF1 expression, lung cancer cells express lower LEF1 levels. A luciferase assay-based high throughput screening (HTS) with a natural compound library showed that cinobufagin suppressed β-catenin/TCF4 transcriptional activity by inhibiting LEF1 expression. Cinobufagin decreases LEF1 expression in a dose-dependent manner and Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell lines. Cinobufagin sensitively attenuates cell viability and induces apoptosis in LEF1 expressing melanoma cells compared to LEF1-low expressing lung cancer cells. In addition, ectopic LEF1 expression is sufficient to attenuate cinobufagin-induced apoptosis and cell growth retardation in melanoma cells. Thus, we suggest that cinobufagin is a potential anti-melanoma drug that suppresses tumor-promoting Wnt/β-catenin signaling via LEF1 inhibition.
Collapse
|
29
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|