1
|
Liu Y, Zhou M, Wang R, Liang Y, Zhuang G, Chen X, Luo S, Cai Y, Song C, Liu L, Ma L, Yao W, Liu Y, Cui L. Alleviation of Glucocorticoid-Induced Osteoporosis in Rats by Ethanolic Reynoutria multiflora (Thunb.) Moldenke Extract. J Med Food 2024; 27:287-300. [PMID: 38442325 DOI: 10.1089/jmf.2023.k.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Secondary osteoporosis is frequently due to the use of high-dose glucocorticoids (GCs). The existing strategy for managing glucocorticoid-induced osteoporosis (GIOP) is considered insufficient and remains in a state of ongoing evolution. Therefore, it is crucial to develop more precise and effective agents for the treatment of GIOP. The constituents of Reynoutria multiflora (Thunb.) Moldenke, specifically Polygonum multiflorum (PM) Thunb, have previously shown promise in mitigating osteopenia. This study aimed to investigate the therapeutic effects of an ethanolic PM extract (PMR30) against GIOP in male rats. Prednisone (6 mg/kg/day, GC) was continuously administered to rats to induce GIOP, and they were subjected to treatment with or without ethanolic PMR30 for a duration of 120 days. Serum was collected for biochemical marker analysis. Bone histomorphometric, histological, and TUNEL analyses were performed on tibia samples. The protein expressions of LC3, Agt5, and Beclin 1 in the femur underwent examination through western blotting. Prolonged and excessive GC treatment significantly impeded bone formation, concomitant with reduced bone mass and body weight. It also suppressed OCN and OPG/RANKL in serum, and decreased Beclin 1 and LC3 in bone. Simultaneously, there was an elevation in bone resorption markers and apoptosis. Treatments with both high dose and low dose of PMR30 alleviated GIOP, stimulated bone formation, and upregulated OCN and OPG/RANKL, while suppressing TRACP-5b, CTX-I, and apoptosis. The impact of PMR30 possibly involves the enhancement of autophagy proteins (LC3, Agt5, and Beclin 1) and the inhibition of apoptosis within the bone. PMR30 holds promise as a prospective therapeutic agent for preventing and treating GIOP.
Collapse
Affiliation(s)
- Yuyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Manru Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
- Guangdong Vocational Institute of Public Administration, Guangzhou, China
| | - Rui Wang
- Chemistry and Pharmacy Experimental Teaching Center, Guangdong Medical University, Zhanjiang, China
| | - Yuyu Liang
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Guangjie Zhuang
- The First School of Clinical Medical, Guangdong Medical University, Zhanjiang, China
| | - Xuelin Chen
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Shiying Luo
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Yuliang Cai
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chuge Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lingna Liu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Luoyang Ma
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
- Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drug, Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Huang TT, Chen CM, Chen LG, Lan YW, Huang TH, Choo KB, Chong KY. 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside ameliorates bleomycin-induced pulmonary fibrosis via regulating pro-fibrotic signaling pathways. Front Pharmacol 2022; 13:997100. [PMID: 36267283 PMCID: PMC9577370 DOI: 10.3389/fphar.2022.997100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside (THSG) is the main active ingredient extracted from Polygonum multiflorum Thunb. (PMT), which has been reported to possess extensive pharmacological properties. Nevertheless, the exact role of THSG in pulmonary fibrosis has not been demonstrated yet. The main purpose of this study was to investigate the protective effect of THSG against bleomycin (BLM)-induced lung fibrosis in a murine model, and explore the underlying mechanisms of THSG in transforming growth factor-beta 1 (TGF-β1)-induced fibrogenesis using MRC-5 human lung fibroblast cells. We found that THSG significantly attenuated lung injury by reducing fibrosis and extracellular matrix deposition. THSG treatment significantly downregulated the expression levels of TGF-β1, fibronectin, α-SMA, CTGF, and TGFBR2, however, upregulated the expression levels of antioxidants (SOD-1 and catalase) and LC3B in the lungs of BLM-treated mice. THSG treatment decreased the expression levels of fibronectin, α-SMA, and CTGF in TGF-β1-stimulated MRC-5 cells. Conversely, THSG increased the expression levels of SOD-1 and catalase. Furthermore, treatment of THSG profoundly reduced the TGF-β1-induced generation of reactive oxygen species (ROS). In addition, THSG restored TGF-β1-induced impaired autophagy, accompany by increasing the protein levels of LC3B-II and Beclin 1. Mechanism study indicated that THSG significantly reduced TGF-β1-induced increase of TGFBR2 expression and phosphorylation of Smad2/3, Akt, mTOR, and ERK1/2 in MRC-5 cells. These findings suggest that THSG may be considered as an anti-fibrotic drug for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Tsung-Teng Huang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Center and the Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Lih-Geeng Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| | - Ying-Wei Lan
- Division of Pulmonary Biology, The Perinatal Institute of Cincinnati Children’s Research Foundation, Cincinnati, OH, United States
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Kong Bung Choo
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
| | - Kowit-Yu Chong
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia
- Hyperbaric Oxygen Medical Research Lab, Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Kowit-Yu Chong,
| |
Collapse
|
3
|
Hui Z, Wang S, Li J, Wang J, Zhang Z. Compound Tongluo Decoction inhibits endoplasmic reticulum stress-induced ferroptosis and promoted angiogenesis by activating the Sonic Hedgehog pathway in cerebral infarction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114634. [PMID: 34536518 DOI: 10.1016/j.jep.2021.114634] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral infarction is one of the most common types of cerebrovascular diseases that threaten people's health. Compound Tongluo Decoction (CTLD), a traditional Chinese medicine formula, has various pharmacological activities, including the alleviation of cerebral infarction symptoms. AIM OF THE STUDY This study aims to explore the potential mechanism by which CTLD alleviates cerebral infarction. MATERIAL AND METHODS Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reperfusion (OGD/R) cell model were established for research. The expression of proteins related to endoplasmic reticulum (ER) stress, ferroptosis, Sonic Hedgehog (SHH) pathway and angiogenesis was analyzed by Western blot analysis. The expression of CD31 was detected by immunofluorescence to investigate angiogenesis. In addition, the expression of GRP78 and XBP-1 in brain tissues was investigated by immunohistochemistry. With the application of Prussian blue staining, iron deposition in brain tissue was detected. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) were detected using ELISA kits. The angiogenesis was analyzed by tube formation assay. RESULTS The results presented in this research showed that CTLD and 4-phenyl butyric acid (4-PBA; the inhibitor of ER stress) could alleviate cerebral infarction. Mechanistically, CTLD and 4-PBA rescued ER stress and ferroptosis, but promoted SHH signaling in rats with cerebral infarction. In addition, cerebral infarction exhibited a high level of angiogenesis, which was aggravated by CTLD but suppressed by 4-PBA. Furthermore, CTLD inhibited ER stress and ferroptosis, but promoted SHH signaling and angiogenesis in OGD/R-induced PC12 cells, which was partly abolished by SANT-1, an antagonist of SHH signaling. CONCLUSION In conclusion, this study revealed that CTLD might inhibit ferroptosis induced by endoplasmic reticulum stress and promote angiogenesis by activating the Sonic Hedgehog pathway in rats with cerebral infarction.
Collapse
Affiliation(s)
- Zhen Hui
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Sulei Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Jianxiang Li
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Jingqing Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China
| | - Zhennian Zhang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, Jiangsu province, PR China.
| |
Collapse
|
4
|
Wang C, Dai S, Gong L, Fu K, Ma C, Liu Y, Zhou H, Li Y. A Review of Pharmacology, Toxicity and Pharmacokinetics of 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-Glucoside. Front Pharmacol 2022; 12:791214. [PMID: 35069206 PMCID: PMC8769241 DOI: 10.3389/fphar.2021.791214] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022] Open
Abstract
Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|