1
|
Deng Y, Xie S, Zhan W, Peng H, Cao H, Tang Z, Tian Y, Zhu T, Jin M, Zhou Q. Dietary Astaxanthin Can Promote the Growth and Motivate Lipid Metabolism by Improving Antioxidant Properties for Swimming Crab, Portunus trituberculatus. Antioxidants (Basel) 2024; 13:522. [PMID: 38790627 PMCID: PMC11117615 DOI: 10.3390/antiox13050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to assess the influence of varying dietary levels of astaxanthin (AST) on the growth, antioxidant capacity and lipid metabolism of juvenile swimming crabs. Six diets were formulated to contain different AST levels, and the analyzed concentration of AST in experimental diets were 0, 24.2, 45.8, 72.4, 94.2 and 195.0 mg kg-1, respectively. Juvenile swimming crabs (initial weight 8.20 ± 0.01 g) were fed these experimental diets for 56 days. The findings indicated that the color of the live crab shells and the cooked crab shells gradually became red with the increase of dietary AST levels. Dietary 24.2 mg kg-1 astaxanthin significantly improved the growth performance of swimming crab. the lowest activities of glutathione (GSH), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and peroxidase (POD) were found in crabs fed without AST supplementation diet. Crabs fed diet without AST supplementation showed lower lipid content and the activity of fatty acid synthetase (FAS) in hepatopancreas than those fed diets with AST supplementation, however, lipid content in muscle and the activity of carnitine palmitoyl transferase (CPT) in hepatopancreas were not significantly affected by dietary AST levels. And it can be found in oil red O staining that dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas. Crabs fed diet with 195.0 mg kg-1 AST exhibited lower expression of ampk, foxo, pi3k, akt and nadph in hepatopancreas than those fed the other diets, however, the expression of genes related to antioxidant such as cMn-sod, gsh-px, cat, trx and gst in hepatopancreas significantly down-regulated with the increase of dietary AST levels. In conclusion, dietary 24.2 and 45.8 mg kg-1 astaxanthin significantly promoted the lipid accumulation of hepatopancreas and im-proved the antioxidant and immune capacity of hemolymph.
Collapse
Affiliation(s)
- Yao Deng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Wenhao Zhan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Haiqing Cao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Zheng Tang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Yinqiu Tian
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China; (Y.D.); (S.X.); (W.Z.); (H.P.); (H.C.); (Z.T.); (Y.T.); (T.Z.)
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| |
Collapse
|
2
|
Magwaza SN, Islam MS. Roles of Marine Macroalgae or Seaweeds and Their Bioactive Compounds in Combating Overweight, Obesity and Diabetes: A Comprehensive Review. Mar Drugs 2023; 21:md21040258. [PMID: 37103396 PMCID: PMC10142144 DOI: 10.3390/md21040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/28/2023] Open
Abstract
Obesity and diabetes are matters of serious concern in the health sector due to their rapid increase in prevalence over the last three decades. Obesity is a severe metabolic problem that results in energy imbalance that is persistent over a long period of time, and it is characterized by insulin resistance, suggesting a strong association with type 2 diabetes (T2D). The available therapies for these diseases have side effects and some still need to be approved by the Food and Drug Administration (FDA), and they are expensive for underdeveloped countries. Hence, the need for natural anti-obesity and anti-diabetic drugs has increased in recent years due to their lower costs and having virtually no or negligible side effects. This review thoroughly examined the anti-obesity and anti-diabetic effects of various marine macroalgae or seaweeds and their bioactive compounds in different experimental settings. According to the findings of this review, seaweeds and their bioactive compounds have been shown to have strong potential to alleviate obesity and diabetes in both in vitro and in vivo or animal-model studies. However, the number of clinical trials in this regard is limited. Hence, further studies investigating the effects of marine algal extracts and their bioactive compounds in clinical settings are required for developing anti-obesity and anti-diabetic medicines with better efficacy but lower or no side effects.
Collapse
Affiliation(s)
- S'thandiwe Nozibusiso Magwaza
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa
| |
Collapse
|
3
|
Yang CS, Guo XS, Yue YY, Wang Y, Jin XL. Astaxanthin Promotes the Survival of Adipose-Derived Stem Cells by Alleviating Oxidative Stress via Activating the Nrf2 Signaling Pathway. Int J Mol Sci 2023; 24:ijms24043850. [PMID: 36835263 PMCID: PMC9959672 DOI: 10.3390/ijms24043850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
The survival of free fat grafts is dependent primarily on adipose-derived stem cells (ADSCs); however, ADSCs are susceptible to oxidative stress in the recipient area. Astaxanthin (Axt) is a natural xanthophyll carotenoid with potent antioxidant properties and numerous clinical applications. To date, the therapeutic potential of Axt in fat grafting has not been explored. The purpose of this study is to investigate the effects of Axt on oxidatively stressed ADSCs. An oxidative model of ADSCs was developed to simulate the host's microenvironment. Oxidative insult decreased the protein levels of Cyclin D1, type I collagen alpha 1 (COL1A1), and type II collagen alpha 1 (COL2A1), while increasing the expression of cleaved Caspase 3 and secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ADSCs. Axt pre-treatment significantly reduced oxidative stress, increased the synthesis of an adipose extracellular matrix, alleviated inflammation, and restored the impaired adipogenic potential in the present model. Furthermore, Axt immensely activated the NF-E2-related factor 2 (Nrf2) pathway, and ML385, an inhibitor of Nrf2, could negate Axt's protective effects. Additionally, Axt alleviated apoptosis by inhibiting bcl-2-associated X protein (BAX)/Caspase 3 signaling and improving the mitochondrial membrane potential (MMP), which could also be abolished by ML385. Our results suggest that Axt may exert its cytoprotective effect on ADSCs through the Nrf2 signaling pathway and could be therapeutic in fat grafting.
Collapse
|
4
|
Zhao L, Zheng M, Cai H, Chen J, Lin Y, Wang F, Wang L, Zhang X, Liu J. The activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation. J Nutr Biochem 2023; 112:109208. [PMID: 36370929 DOI: 10.1016/j.jnutbio.2022.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
Mitochondrial reactive oxygen species (ROS)generation plays an essential role in the process of adipocyte differentiation and is involved in the development of obesity and associated metabolic diseases. Various dietary flavonoids possess the substantial anti-adipogenic activity. However, it is unclear whether these flavonoids inhibit adipocyte differentiation by reducing ROS generation. In this study, the effects of six common dietary flavonoids on adipocyte differentiation were assessed in 3T3-L1 cells. The flavonoids with the same backbone of 5,7-dihydroxylflavone, including flavones apigenin, chrysin, luteolin and flavonols kaempferol, myricetin, quercetin, dose-dependently inhibited 3T3-L1 adipocyte differentiation, suggesting an associated hierarchy of inhibitory capability: luteolin > quercetin > myricetin > apigenin/kaempferol > chrysin. Meanwhile, six flavonoids were found to inhibit adipogenic gene expression and the early stage of adipocyte differentiation. Among the tested flavonoids, luteolin significantly reduced both intracellular and mitochondrial ROS generation during adipocyte differentiation. Further, luteolin treatment depressed the elevation of H2O2 concentration in the early stage of 3T3-L1 differentiation and reversed the facilitated effects of exogenous H2O2 on 3T3-L1 adipocyte differentiation and ROS generation. Altogether, the activity comparison of six dietary flavonoids identifies that luteolin inhibits 3T3-L1 adipocyte differentiation through reducing ROS generation, elucidating a new mechanism underlying the anti-adipogenic actions of flavonoids.
Collapse
Affiliation(s)
- Lingli Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Mengfei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Hao Cai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China.
| | - Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Lu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, P R China; Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, P R China.
| |
Collapse
|
5
|
The Activity of Ten Natural Extracts Combined in a Unique Blend to Maintain Cholesterol Homeostasis-In Vitro Model. Int J Mol Sci 2022; 23:ijms23073805. [PMID: 35409162 PMCID: PMC8998641 DOI: 10.3390/ijms23073805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Hypercholesterolemia is a major cause of cardiovascular disease and statins, the HMGCoA inhibitors, are the most prescribed drugs. Statins reduce the production of hepatic cholesterol, leading to greater expression of the LDL receptor and greater absorption of circulating LDL, reducing peripheral LDL levels. Unfortunately, statins are believed to induce myopathy and other severe diseases. To overcome this problem, safe nutraceuticals with the same activity as statins could hold great promise in the prevention and treatment of hypercholesterolemia. In this study, the anti-cholesterol efficacy of a new nutraceutical, called Esterol10®, was evaluated. METHODS HepG2 cells were used to study the biological mechanisms exerted by Esterol10® analyzing different processes involved in cholesterol metabolism, also comparing data with Atorvastatin. RESULTS Our results indicate that Esterol10® leads to a reduction in total hepatocyte cholesterol and an improvement in the biosynthesis of free cholesterol and bile acids. Furthermore, the anti-cholesterol activity of Esterol10® was also confirmed by the modulation of the LDL receptor and by the accumulation of lipids, as well as by the main intracellular pathways involved in the metabolism of cholesterol. CONCLUSIONS Esterol10® is safe and effective with anti-cholesterol activity, potentially providing an alternative therapy to those based on statins for hypercholesterolemia disease.
Collapse
|
6
|
Gao Y, Yuan S, Chen Y, Liu F, Wei Z, Cao W, Li RW, Xu J, Xue C, Tang Q. The improvement effect of astaxanthin-loaded emulsions on obesity is better than that of astaxanthin in the oil phase. Food Funct 2022; 13:3720-3731. [PMID: 35266464 DOI: 10.1039/d1fo03185f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Emulsion-based delivery systems have been reported to improve the solubility, stability and bioavailability of astaxanthin. In this study, the ability of astaxanthin-loaded emulsions (AL) to ameliorate obesity induced by a high-fat and high-sucrose diet was explored, using astaxanthin in the oil phase (ASTA) as a comparison. After the administration of AL, ASTA (30 mg per kg body weight), or saline on normal or obese mice for 4 weeks, the body fat accumulation levels, hepatic lipid contents and hepatic fatty acid profiles were detected, and AL showed better anti-obesity properties than ASTA. In an acute feeding experiment, it was first observed that the astaxanthin concentration of AL was higher than that of ASTA in the blood and liver of obese mice. What's more, AL altered the microbial co-occurrence patterns in obese mice. Some gut microbial modules that were significantly correlated with obesity-related physiological parameters were identified. Overall, the improvement effect of AL on obesity is better than that of ASTA due to their higher oral absorbability and modulating effects on the gut microbiota, and we suggest AL as a more suitable astaxanthin product type for obese bodies.
Collapse
Affiliation(s)
- Yuan Gao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Shihan Yuan
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Yuze Chen
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Fang Liu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Zihao Wei
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Wanxiu Cao
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Robert W Li
- Laboratory of Animal Genomics and Improvement, United States Department of Agriculture, Agriculture Research Service (USDA-ARS), Beltsville, MD 20705, USA
| | - Jie Xu
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| | - Changhu Xue
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China. .,Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266235, China
| | - Qingjuan Tang
- Laboratory of Food Science and Human Health, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
7
|
Örs ED, Alkan ŞB, Öksüz A. Possible Effect of Astaxanthin on Obesity-related Increased COVID-19
Infection Morbidity and Mortality. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666211011105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract:
Obesity is defined by the World Health Organisation (WHO) as a body mass index
equal to 30 kg/m2 or greater. It is an important and escalating global public health problem.
Obesity is known to cause low-grade chronic inflammation, increasing the burden of noncommunicable
and possibly communicable diseases. There is considerable evidence that obesity is
associated with an increased risk of contracting coronavirus disease 2019 (COVID-19) infection
as well as significantly higher COVID-19 morbidity and mortality. It appears plausible
that controlling the chronic systemic low-grade inflammation associated with obesity may have
a positive impact on the symptoms and the prognosis of COVID-19 disease in obese patients.
Astaxanthin (ASTX) is a naturally occurring carotenoid with anti-inflammatory, antioxidant,
and immunomodulatory activities. As a nutraceutical agent, it is used as a preventative and a
co-treatment in a number of systemic neurological, cardiovascular, and metabolic diseases.
This review article will discuss the pathogenesis of COVID-19 infection and the effect of
ASTX on obesity and obesity-related inflammation. The potential positive impact of ASTX anti-
inflammatory properties in obese COVID-19 patients will be discussed.
Collapse
Affiliation(s)
- Elif Didem Örs
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Şenay Burçin Alkan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| | - Abdullah Öksüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
8
|
Phenolic Compounds from Mori Cortex Ameliorate Sodium Oleate-Induced Epithelial-Mesenchymal Transition and Fibrosis in NRK-52e Cells through CD36. Molecules 2021; 26:molecules26206133. [PMID: 34684716 PMCID: PMC8540367 DOI: 10.3390/molecules26206133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial–mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and fibrosis induced by sodium oleate-induced lipid deposition in renal tubular epithelial cells (NRK-52e cells), and the role played by CD36 in the adjustment process, NRK-52e cells induced by 200 μmol/L sodium oleate were given 10 μmoL/L moracin-P-2″-O-β-d-glucopyranoside (Y-1), moracin-P-3′-O-β-d-glucopyranoside (Y-2), moracin-P-3′-O-α-l-arabinopyranoside (Y-3), and moracin-P-3′-O-[β-glucopyranoside-(1→2)arabinopyranoside] (Y-4), and Oil Red O staining was used to detect lipid deposition. A Western blot was used to detect lipid deposition-related protein CD36, inflammation-related protein (p-NF-κB-P65, NF-κB-P65, IL-1β), oxidative stress-related protein (NOX1, Nrf2, Keap1), EMT-related proteins (CD31, α-SMA), and fibrosis-related proteins (TGF-β, ZEB1, Snail1). A qRT-PCR test detected inflammation, EMT, and fibrosis-related gene mRNA levels. The TNF-α levels were detected by ELISA, and the colorimetric method was used to detects SOD and MDA levels. The ROS was measured by flow cytometry. A high-content imaging analysis system was applied to observe EMT and fibrosis-related proteins. At the same time, the experiment silenced CD36 and compared the difference between before and after drug treatment, then used molecular docking technology to predict the potential binding site of the active compounds with CD36. The research results show that sodium oleate can induce lipid deposition, inflammation, oxidative stress, and fibrosis in NRK-52e cells. Y-1 and Y-2 could significantly ameliorate the damage caused by sodium oleate, and Y-2 had a better ameliorating effect, while there was no significant change in Y-3 or Y-4. The amelioration effect of Y-1 and Y-2 disappeared after silencing CD36. Molecular docking technology showed that the Y-1 and Y-2 had hydrogen bonds to CD36 and that, compared with Y-1, Y-2 requires less binding energy. In summary, moracin-P-2″-O-β-d-glucopyranoside and moracin-P-3′-O-β-d-glucopyranoside from Mori Cortex ameliorated lipid deposition, EMT, and fibrosis induced by sodium oleate in NRK-52e cells through CD36.
Collapse
|
9
|
Shrimp Oil Extracted from Shrimp Processing By-Product Is a Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters, and Reveals Potential Anti-Adipogenic Effects in 3T3-L1 Adipocytes. Mar Drugs 2021; 19:md19050259. [PMID: 33946320 PMCID: PMC8146821 DOI: 10.3390/md19050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this study, shrimp oil (SO) was extracted from the shrimp processing by-product using the Soxhlet method (hexane:acetone 2:3). The extracted SO was rich in phospholipids, n-3 PUFA, and Astx-E. The 3T3-L1 preadipocytes were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days. The effects of SO were then investigated on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis in 3T3-L1 cells. The effects of fish oil (FO), in combination with Astx-E, on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis were also investigated. The SO decreased fat accumulation, compared to untreated cells, which coincided with lower mRNA expression of adipogenic and lipogenic genes. However, FO and FO + Astx-E increased fat accumulation, along with increased mRNA expression of adipogenic and lipogenic genes, and glucose transporter type 4 (Glut-4), compared to untreated cells. These findings have demonstrated that the SO is a rich source of n-3 PUFA and Astx-E, and has the potential to elicit anti-adipogenic effects. Moreover, the SO and FO appear to regulate adipogenesis and lipogenesis via independent pathways in 3T3-L1 cells.
Collapse
|