Abstract
Simple Summary
miR-944 is localized in intron 4 of TP63. ΔNp63 in intron 3 of TP63 recruits the transcription factor AP-2 to promote miR-944 gene expression, which mediates epidermal differentiation induction by ΔNp63. miR-944 is dysregulated in various cancers. In squamous cell carcinoma. miR-944 can target and inhibit 27 protein-coding genes, thereby regulating cell cycle, proliferation, apoptosis, epithelial mesenchymal transition, cancer cell invasion and migration, and other cell behaviors. The genes targeted by miR-944 are involved in three signaling pathways, including the Wnt/β-catenin pathway, Jak/STAT3 pathway, and PI3K/AKT pathway. miR-944 was regulated by a total of 11 competing endogenous RNAs, including 6 circular RNAs and 5 long non-coding RNAs. Abnormally expressed miR-944 can act as an independent prognostic factor and is closely related to tumor invasion, lymph node metastasis, TNM staging, and drug resistance. miR-944 is expected to become a critical biomarker with great clinical application value in cancer.
Abstract
miRNA is a class of endogenous short-chain non-coding RNAs consisting of about 22 nucleotides. miR-944 is located in the fourth intron of the TP63 gene in the 3q28 region. miR-944 is abnormally expressed in cancers in multiple systems including neural, endocrine, respiratory, reproductive, and digestive systems. miR-944 can target at least 27 protein-coding genes. miR-944 can regulate a series of cell behaviors, such as cell cycle, proliferation, invasion and migration, EMT, apoptosis, etc. miR-944 participates in the networks of 11 ceRNAs, including six circRNAs and five lncRNAs. miR-944 is involved in three signaling pathways. The abnormal expression of miR-944 is closely related to the clinicopathological conditions of various cancer patients. Deregulated expression of miR-944 is significantly associated with clinicopathology and prognosis in cancer patients. In addition, miR-944 is also associated with the development of DDP, RAPA, DOX, and PTX resistance in cancer cells. miR-944 is involved in the anticancer molecular mechanisms of matrine and Rhenium-liposome drugs. In conclusion, this work systematically summarizes the related findings of miR-944, which will provide potential hints for follow-up research on miR-944.
Collapse