1
|
Wang ZL, Wang Y, Sun YC, Zhao JB, Xu YH. Regiodivergent Hydrosilylation of Polar Enynes to Synthesize Site-Specific Silyl-Substituted Dienes. Angew Chem Int Ed Engl 2024; 63:e202405791. [PMID: 38593214 DOI: 10.1002/anie.202405791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Herein, we present catalyst-regulated switchable site-selective hydrosilylation of enynes, which are suitable for a wide range of alkyl and aryl substituted polar enynes and exhibit excellent functional group compatibility. Under the optimized conditions, silyl groups can be precisely installed at various positions of 1,3-dienes. While α- and γ-silylation products were obtained under platinum-catalytic systems, β-silylation products were delivered with [Cp*RuCl]4 as catalyst. This process lead to the formation of 1,3-dienoates with diverse substitutions, which would pose challenges with other methodologies.
Collapse
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ying Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu-Chen Sun
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin-Bo Zhao
- Faculty of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P.R. China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
2
|
Zou J, Qiu ZC, Yu QQ, Wu JM, Wang YH, Shi KD, Li YF, He RR, Qin L, Yao XS, Wang XL, Gao H. Discovery of a Potent Antiosteoporotic Drug Molecular Scaffold Derived from Angelica sinensis and Its Bioinspired Total Synthesis. ACS CENTRAL SCIENCE 2024; 10:628-636. [PMID: 38559293 PMCID: PMC10979506 DOI: 10.1021/acscentsci.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 04/04/2024]
Abstract
Angelica sinensis, commonly known as Dong Quai in Europe and America and as Dang-gui in China, is a medicinal plant widely utilized for the prevention and treatment of osteoporosis. In this study, we report the discovery of a new category of phthalide from Angelica sinensis, namely falcarinphthalides A and B (1 and 2), which contains two fragments, (3R,8S)-falcarindiol (3) and (Z)-ligustilide (4). Falcarinphthalides A and B (1 and 2) represent two unprecedented carbon skeletons of phthalide in natural products, and their antiosteoporotic activities were evaluated. The structures of 1 and 2, including their absolute configurations, were established using extensive analysis of NMR spectra, chemical derivatization, and ECD/VCD calculations. Based on LC-HR-ESI-MS analysis and DFT calculations, a production mechanism for 1 and 2 involving enzyme-catalyzed Diels-Alder/retro-Diels-Alder reactions was proposed. Falcarinphthalide A (1), the most promising lead compound, exhibits potent in vitro antiosteoporotic activity by inhibiting NF-κB and c-Fos signaling-mediated osteoclastogenesis. Moreover, the bioinspired gram-scale total synthesis of 1, guided by intensive DFT study, has paved the way for further biological investigation. The discovery and gram-scale total synthesis of falcarinphthalide A (1) provide a compelling lead compound and a novel molecular scaffold for treating osteoporosis and other metabolic bone diseases.
Collapse
Affiliation(s)
- Jian Zou
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Zuo-Cheng Qiu
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
- Translational
Medicine R&D Center, Institute of Biomedical and Health Engineering/Key
Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, People’s Republic of China
- College
of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qiang-Qiang Yu
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Jia-Ming Wu
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Yong-Heng Wang
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ke-Da Shi
- Translational
Medicine R&D Center, Institute of Biomedical and Health Engineering/Key
Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, People’s Republic of China
| | - Yi-Fang Li
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Rong-Rong He
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ling Qin
- Translational
Medicine R&D Center, Institute of Biomedical and Health Engineering/Key
Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, People’s Republic of China
| | - Xin-Sheng Yao
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xin-Luan Wang
- Translational
Medicine R&D Center, Institute of Biomedical and Health Engineering/Key
Laboratory of Biomedical Imaging Science and System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, People’s Republic of China
| | - Hao Gao
- Institute
of Traditional Chinese Medicine and Natural Products, College of Pharmacy/International
Cooperative Laboratory of Traditional Chinese Medicine Modernization
and Innovative Drug Development of Chinese Ministry of Education of
China/Guangdong Province Key Laboratory of Pharmacodynamic Constituents
of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
3
|
Xu GL, Duan YT, Wang ZX. Copper-Catalyzed Reaction of 2,3-Allenols with Silylzinc Reagents: Access to 2-Silyl-1,3-butadienes. Org Lett 2022; 24:7934-7938. [PMID: 36268997 DOI: 10.1021/acs.orglett.2c03041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction of 2,3-allenols with PhMe2SiZnCl or Ph2MeSiZnCl under catalysis of IPrCuCl or SIPrCuCl was carried out, affording 2-silyl-1,3-butadienes. Secondary and tertiary 2,3-allenols could be used as coupling partners. Reaction of secondary 2,3-allenols gave (E)-2-silyl-1,3-butadienes as the only products.
Collapse
Affiliation(s)
- Guang-Li Xu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yu-Tong Duan
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
4
|
Xu GL, Wang ZX. Palladium‐Catalyzed Reaction of 2,3‐Allenols with Amines: Synthesis of [3]Dendralenes and 1,3‐Dienes Containing Allylic Amino and Hydroxy Groups. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guang-Li Xu
- University of Science and Technology of China CHINA
| | | |
Collapse
|
5
|
Xie S, Chen W, Liu S, Zong H, Ming B, Zhou G. Facile synthesis and functionalization of fluoranthenes via intramolecular [4 + 2] annulations between thiophenes and alkynes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Rehman U, Mansha A, Zahid M, Asim S, Zahoor AF, Rehan ZA. Quantum mechanical modeling unveils the effect of substitutions on the activation barriers of the Diels–Alder reactions of an antiviral compound 7H-benzo[a]phenalene. Struct Chem 2022. [DOI: 10.1007/s11224-022-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Jia J, Yuan F, Zhang Z, Song X, Hu F, Xia Y. Copper-Catalyzed Ring-Opening Defluoroborylation of gem-Difluorinated Cyclobutenes: A General Route to Bifunctional 1,3-Dienes and Their Applications. Org Lett 2022; 24:1985-1990. [PMID: 35238573 DOI: 10.1021/acs.orglett.2c00403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The exploration of the reactivity of gem-difluorinated small-size rings has continuously drawn attention in recent years but is limited to three-membered carbocycles. Herein we report a copper-catalyzed reaction of gem-fluorinated cyclobutenes with bis(pinacolato)diboron (B2pin2). A sequence of defluoroborylation and a ring-opening process produces B,F-bifunctional 1,3-dienes in a stereoselective manner. The transformation together with the efficient downstream coupling of the boronate and the fluoride moieties collectively constitutes a modular route to highly functionalized and stereocontrolled 1,3-dienes.
Collapse
Affiliation(s)
- Jie Jia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fushan Yuan
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zihao Zhang
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.,School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Fangdong Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Ying Xia
- West China School of Public Health and West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Xu GL, Wang ZX. Palladium-Catalyzed Silylation of 2,3-Allenols with Unactivated Disilanes: Access to 2-Silyl-1,3-butadienes and α-Silyl-β-hydroxy Vinylsilanes. Org Lett 2022; 24:692-696. [PMID: 35057630 DOI: 10.1021/acs.orglett.1c04141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regioselective silylation of 2,3-allenols with disilanes was carried out under catalysis of Pd2dba3/P(o-MeOC6H4)3. In the presence of Cs2CO3, the reaction achieved 2-silyl-1,3-dienes. Reaction of 1-aryl-2,3-allenols gave the products with excellent Z/E selectivity and E-isomers as the major species. Reaction of α-alkylallenols or α-alkyl-α-aryl-allenols resulted in products with moderate Z/E selectivity and E-isomers are also major. Without a base, the reaction produced α-silyl-β-hydroxyl vinylsilanes, which were converted to 2-silyl-1,3-dienes upon treatment with Cs2CO3.
Collapse
Affiliation(s)
- Guang-Li Xu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| |
Collapse
|
9
|
Li D, Xu J, Xu X, Yang W, Jian J. Matrix Infrared Spectra of 1-Ethynyl-1H-Silole Species from Reaction of Silicon Atoms with Benzene. Phys Chem Chem Phys 2022; 24:4978-4986. [DOI: 10.1039/d1cp05245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of silicon atoms with benzene molecule in solid neon are studied by matrix isolation infrared spectroscopy. Aided by carbon-13 and deuterium isotopic shifts as well as quantum-chemical predictions,...
Collapse
|
10
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Zhang WD, Zou JY, Zhong Q, Li SS, Zhao J. Synergistic Pd/Cu-catalysed regio- and stereoselective borylation of allenylic carbonates. Chem Commun (Camb) 2021; 58:1037-1040. [PMID: 34951424 DOI: 10.1039/d1cc05854a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple Pd/Cu-catalyzed borylation of allenylic carbonates with B2Pin2 was developed using a cheap P(OEt)3 ligand. Under mild neutral conditions, 2-boryl 1,3-butadienes were obtained selectively in moderate to high yields. Furthermore, the use of different diboron reagents was also feasible in the reaction.
Collapse
Affiliation(s)
- Wei-Dong Zhang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jia-Yu Zou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qin Zhong
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shi-Sen Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jian Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Labadie N, Ramos Marchena JM, Medrán NS, Pellegrinet SC. Allenylboronic Acid Pinacol Ester: A Selective Partner for [4 + 2] Cycloadditions. Org Lett 2021; 23:5081-5085. [PMID: 34151574 DOI: 10.1021/acs.orglett.1c01609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the reaction of allenylboronic acid pinacol ester with cyclopentadiene with experimental and computational methods. The reaction occurred efficiently with complete Diels-Alder periselectivity and regioselectivity at the proximal double bond. The concerted mechanism for the observed transformation was computed to be favored over competitive addition to the distal double bond, [3,3]-sigmatropic rearrangements, and stepwise radical mechanism. This unprecedented Diels-Alder reaction enables the construction of synthetically versatile boron-substituted cycloadducts.
Collapse
Affiliation(s)
- Natalia Labadie
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Juan M Ramos Marchena
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Noelia S Medrán
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Silvina C Pellegrinet
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|