1
|
Pyka P, Garbo S, Murzyn A, Satała G, Janusz A, Górka M, Pietruś W, Mituła F, Popiel D, Wieczorek M, Palmisano B, Raucci A, Bojarski AJ, Zwergel C, Szymańska E, Kucwaj-Brysz K, Battistelli C, Handzlik J, Podlewska S. Unlocking the potential of higher-molecular-weight 5-HT 7R ligands: Synthesis, affinity, and ADMET examination. Bioorg Chem 2024; 151:107668. [PMID: 39079393 DOI: 10.1016/j.bioorg.2024.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
An increasing number of drugs introduced to the market and numerous repositories of compounds with confirmed activity have posed the need to revalidate the state-of-the-art rules that determine the ranges of properties the compounds should possess to become future drugs. In this study, we designed a series of two chemotypes of aryl-piperazine hydantoin ligands of 5-HT7R, an attractive target in search for innovative CNS drugs, with higher molecular weight (close to or over 500). Consequently, 14 new compounds were synthesised and screened for their receptor activity accompanied by extensive docking studies to evaluate the observed structure-activity/properties relationships. The ADMET characterisation in terms of the biological membrane permeability, metabolic stability, hepatotoxicity, cardiotoxicity, and protein plasma binding of the obtained compounds was carried out in vitro. The outcome of these studies constituted the basis for the comprehensive challenge of computational tools for ADMET properties prediction. All the compounds possessed high affinity to the 5-HT7R (Ki below 250 nM for all analysed structures) with good selectivity over 5-HT6R and varying affinity towards 5-HT2AR, 5-HT1AR and D2R. For the best compounds of this study, the expression profile of genes associated with neurodegeneration, anti-oxidant response and anti-inflammatory function was determined, and the survival of the cells (SH-SY5Y as an in vitro model of Alzheimer's disease) was evaluated. One 5-HT7R agent (32) was characterised by a very promising ADMET profile, i.e. good membrane permeability, low hepatotoxicity and cardiotoxicity, and high metabolic stability with the simultaneous high rate of plasma protein binding and high selectivity over other GPCRs considered, together with satisfying gene expression profile modulations and neural cell survival. Such encouraging properties make it a good candidate for further testing and optimisation as a potential agent in the treatment of CNS-related disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Aleksandra Murzyn
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Artur Janusz
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał Górka
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Wojciech Pietruś
- Medicinal Chemistry Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Filip Mituła
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Delfina Popiel
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland; Clinical Development Department, Celon Pharma S.A., R&D Centre, Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome
| | - Alessia Raucci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome.
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688 Kraków, Poland.
| | - Sabina Podlewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| |
Collapse
|
2
|
Kaczor A, Knutelska J, Kucwaj-Brysz K, Zygmunt M, Żesławska E, Siwek A, Bednarski M, Podlewska S, Jastrzębska-Więsek M, Nitek W, Sapa J, Handzlik J. The Subtype Selectivity in Search of Potent Hypotensive Agents among 5,5-Dimethylhydantoin Derived α 1-Adrenoceptors Antagonists. Int J Mol Sci 2023; 24:16609. [PMID: 38068933 PMCID: PMC10706087 DOI: 10.3390/ijms242316609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
In order to find new hypotensive drugs possessing higher activity and better selectivity, a new series of fifteen 5,5-dimethylhydantoin derivatives (1-15) was designed. Three-step syntheses, consisting of N-alkylations using standard procedures as well as microwaves, were carried out. Crystal structures were determined for compounds 7-9. All of the synthesized 5,5-dimethylhydantoins were tested for their affinity to α1-adrenergic receptors (α1-AR) using both in vitro and in silico methods. Most of them displayed higher affinity (Ki < 127.9 nM) to α1-adrenoceptor than urapidil in radioligand binding assay. Docking to two subtypes of adrenergic receptors, α1A and α1B, was conducted. Selected compounds were tested for their activity towards two α1-AR subtypes. All of them showed intrinsic antagonistic activity. Moreover, for two compounds (1 and 5), which possess o-methoxyphenylpiperazine fragments, strong activity (IC50 < 100 nM) was observed. Some representatives (3 and 5), which contain alkyl linker, proved selectivity towards α1A-AR, while two compounds with 2-hydroxypropyl linker (11 and 13) to α1B-AR. Finally, hypotensive activity was examined in rats. The most active compound (5) proved not only a lower effective dose than urapidil but also a stronger effect than prazosin.
Collapse
Affiliation(s)
- Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Joanna Knutelska
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, University of the National Education Commision, Podchorążych 2, 30-084 Krakow, Poland;
| | - Agata Siwek
- Department of Pharmacobiology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland;
| | - Marek Bednarski
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Medicinal Chemistry, Smętna 12, 31-343 Krakow, Poland;
| | | | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Jacek Sapa
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (J.K.); (M.Z.); (M.B.); (J.S.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Medical College, Jagiellonian University, Medyczna 9, 30-688 Krakow, Poland; (A.K.); (K.K.-B.)
| |
Collapse
|
3
|
Witek K, Kaczor A, Żesławska E, Podlewska S, Marć MA, Czarnota-Łydka K, Nitek W, Latacz G, Tejchman W, Bischoff M, Jacob C, Handzlik J. Chalcogen-Varied Imidazolone Derivatives as Antibiotic Resistance Breakers in Staphylococcus aureus Strains. Antibiotics (Basel) 2023; 12:1618. [PMID: 37998820 PMCID: PMC10669504 DOI: 10.3390/antibiotics12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of β-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.
Collapse
Affiliation(s)
- Karolina Witek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2.1, D-66123 Saarbrüecken, Germany;
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany;
| | - Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland; (E.Ż.); (W.T.)
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Kinga Czarnota-Łydka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 15, 31-530 Krakow, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Waldemar Tejchman
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland; (E.Ż.); (W.T.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany;
| | - Claus Jacob
- Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2.1, D-66123 Saarbrüecken, Germany;
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| |
Collapse
|
4
|
Al-Sallami D, Alsultan A, Abbas KH, Clarke SR. Evaluation of efflux pump inhibitory activity of some plant extracts and using them as adjuvants to potentiate the inhibitory activity of some antibiotics against Staphylococcus aureus. Open Vet J 2023; 13:42-47. [PMID: 36777436 PMCID: PMC9897506 DOI: 10.5455/ovj.2023.v13.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/11/2022] [Indexed: 02/05/2023] Open
Abstract
Background Antibiotic-resistant pathogens became a real global threat to human and animal health. This needs to concentrate the efforts to minimize and control these organisms. Efflux pumps are considered one of the important strategies used by bacteria to exclude harmful materials from the cell. Inhibition of these pumps can be an active strategy against multidrug resistance pathogens. There are two sources of efflux pump inhibitors that can be used, chemical and natural inhibitors. The chemical origin efflux pump inhibitors have many toxic side effects while the natural origin is characterized by a wide margin of safety for the host cell. Aim In this study, the ability of some plant extracts like (propolis show rosemary, clove, capsaicin, and cumin) to potentiate the inhibitory activity of some antibiotics such as (ciprofloxacin, erythromycin, gentamycin, tetracycline, and ampicillin) against Staphylococcus aureus pathogen were tested. Methods Efflux pump inhibitory activity of the selected plant extracts was tested using an ethidium bromide (EtBr) accumulation assay. Results The results have shown that Propolis has a significant synergistic effect in combination with ciprofloxacin, erythromycin, and gentamycin. While it has no effect with tetracycline or ampicillin. Also, no synergic effect was noticed in a combination of the minimum inhibitory concentration for the selected plant extracts (rosemary, clove, capsaicin, and cumin) with any of the tested antibiotics. Interestingly, according to the results of the EtBr accumulation assay, Propolis has potent inhibitory activity against the S. aureus (MRS usa300) pump system. Conclusion This study suggests that Propolis might act as a resistance breaker that is able to restore the activity of ciprofloxacin, erythromycin, and gentamycin against S. aureus strains, in case of the efflux-mediated antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Dhama Al-Sallami
- Department of Physiology, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Amjed Alsultan
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq,Corresponding Author: Amjed Alsultan. Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al- Diwaniyah, Iraq.
| | - Kadhim Hassan Abbas
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| | - Simon R. Clarke
- Department of Physiology, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
| |
Collapse
|
5
|
Guo Y, Huang C, Su H, Zhang Z, Chen M, Wang R, Zhang D, Zhang L, Liu M. Luteolin increases susceptibility to macrolides by inhibiting MsrA efflux pump in Trueperella pyogenes. Vet Res 2022; 53:3. [PMID: 35012652 PMCID: PMC8744338 DOI: 10.1186/s13567-021-01021-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0-97.7% and 36.5-71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10-5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Yuru Guo
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chengcheng Huang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongyu Su
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zehui Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Menghan Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ruxia Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Dexian Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Luyao Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Appell M, Compton DL, Evans KO. Predictive Quantitative Structure-Activity Relationship Modeling of the Antifungal and Antibiotic Properties of Triazolothiadiazine Compounds. Methods Protoc 2020; 4:mps4010002. [PMID: 33375476 PMCID: PMC7838911 DOI: 10.3390/mps4010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 11/23/2022] Open
Abstract
Predictive models were developed using two-dimensional quantitative structure activity relationship (QSAR) methods coupled with B3LYP/6-311+G** density functional theory modeling that describe the antimicrobial properties of twenty-four triazolothiadiazine compounds against Aspergillus niger, Aspergillus flavus and Penicillium sp., as well as the bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. B3LYP/6-311+G** density functional theory calculations indicated the triazolothiadiazine derivatives possess only modest variation between the frontier orbital properties. Genetic function approximation (GFA) analysis identified the topological and density functional theory derived descriptors for antimicrobial models using a population of 200 models with one to three descriptors that were crossed for 10,000 generations. Two or three descriptor models provided validated predictive models for antifungal and antibiotic properties with R2 values between 0.725 and 0.768 and no outliers. The best models to describe antimicrobial activities include descriptors related to connectivity, electronegativity, polarizability, and van der Waals properties. The reported method provided robust two-dimensional QSAR models with topological and density functional theory descriptors that explain a variety of antifungal and antibiotic activities for structurally related heterocyclic compounds.
Collapse
Affiliation(s)
- Michael Appell
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA
- Correspondence:
| | - David L. Compton
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (D.L.C.); (K.O.E.)
| | - Kervin O. Evans
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Renewable Product Technology Research Unit, 1815 N. University St., Peoria, IL 61604, USA; (D.L.C.); (K.O.E.)
| |
Collapse
|